
AHA! meets Auld Linky : Integrating Designed and
Free-form Hypertext Systems

David Millard, Hugh Davis, Mark Weal
University of Southampton

Southampton, UK

fdem,hcd,mjwg@ecs.soton.ac.uk

Koen Aben, Paul De Bra
Eindhoven University of Technology,

Eindhoven, The Netherlands

fs458238,debrag@win.tue.nl

ABSTRACT
In this paper we present our efforts to integrate two adaptive hyper-
media systems that take very different approaches. The Adaptive
Hypermedia Architecture (AHA!) aims to establish a consistently
organized, strictly designed form of hypertext while Auld Linky
takes an open and potentially sculptural approach, producing more
freeform, less deterministic hypertexts.

We describe the difficulties in reconciling the two approaches.
This leads us to draw a number of conclusions about the benefits
and disadvantages of both and the concessions that are required to
combine them successfully.

Categories and Subject Descriptors
H.5.4 [Hypertext/Hypermedia]: Theory; H.1.1 [Systems and In-
formation Theory]: General systems theory

General Terms
Theory Design Standardization

1. INTRODUCTION
Within the Hypermedia research community there have been two

implicit approaches to the design (and authoring) of Hypertexts.
Some systems, such as Hyper-G [2] and Intermedia [17], took de-
signed approaches which are deterministic in the sense that an au-
thor always understands the navigational paths available to their
reader at any one time. Even when the systems are adaptive, there
is tight control over which links are available and the possibility
space is small.

Other systems, such as Microcosm [15] and Chimera [1], took
a more freeform approach. Because the hyperstructure was assem-
bled at run-time from many potential sources an author knew much
less about the links available to a reader, as such we can describe
these systems as non-deterministic.

Broadly speaking these two approaches characterise the two trends
of Hypertext research, known as Adaptive Hypermedia (AH) and
Open Hypermedia (OH), that have evolved in parallel since the late
1980’s.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HT’03, August 26–30, 2003, Nottingham, United Kingdom.
Copyright 2003 ACM 1-58113-704-4/03/0008 ...$5.00.

AH researchers have been concerned with applying the meth-
ods found in Artificial Intelligence, Intelligent Tutoring Systems
and User Modelling communities to Hypertext, in order to create
dynamic systems that adapt the hyperstructure at run-time to the
user’s current needs [9, 7].

OH researchers have concentrated on investigating and separat-
ing the structural layers of a hypertext system. OH Systems store
link structures and content separately and combine the two together
at run-time, allowing the structures to be processed separately and
easily applied to a wide variety of media [16, 15].

Researchers from the Eindhoven University of Technology have
recently been working with the IAM Group at the University of
Southampton with the aim of better understanding the relationship
between Eindhoven’s AH system, called Adaptive Hypermedia Ar-
chitecture (AHA!) [7], and Southampton’s most recent OH system,
Auld Linky [18].

Our work is motivated by a desire to apply the AH structures
described in previous work [4] with an existing practical adaptive
system. The objective is to discover how the structural approach
affects the processes of adaptation within AHA and to see if the
OH paradigm can support evolving structures alongside a more pre-
determined adaptive model.

In this paper we describe how we have attempted to combine
AHA! with Auld Linky using ideas from Sculptural Hypertext [5,
22].

Auld Linky is an Open Hypermedia System (OHS) that might be
described as adaptive in that it selects the hyperstructure at run-time
according to context. However, it is not necessarily driven by the
sophisticated reasoning that characterises an Adaptive Hypermedia
System (AHS) like AHA!.

Because of this difference we have been forced to reconcile the
two Hypermedia approaches in our integration work, balancing the
different methodologies of AHS and OHS in an attempt to under-
stand each in the terms of the other.

Section 2 describes AHA! and the scripting language that has
recently been introduced to it.

Section 3 describes Auld Linky and the Sculptural Hypertext au-
thoring paradigm.

Sections 4 and 5 present our design for how the AHA! scripting
language could be used to produce sculptural linkbases that can
be manipulated by Auld Linky and also how they can be used to
augment a running AHA! application. We also describe some of
the problems we have had to confront as a result of the tension
between the different methodologies.

In Section 6 we reflect on the new understanding of how the two
systems and their methodologies relate to one another, and propose
a future integration strategy for methodologically different systems,
based on this understanding.

161



2. ADAPTIVE HYPERMEDIA
ARCHITECTURE (AHA!)

The Adaptive Hypermedia Architecture (AHA!) is a generic sys-
tem that provides authors with a web-based runtime layer and de-
sign tools for the creation and implementation of adaptive hyper-
media applications.

We believe that AHA! is the most suitable hypermedia architec-
ture to use for our integration work, because it deals with adaptive
hypermedia from a detailed conceptual point of view and therefore
has the potential to create complex interacting concept structures
which are very deterministic.

Other architectures, like KBS Hyperbook [20] or Interbook [10],
emphasis high-level adaptivity which means that it is easier to add
new structures to an existing application. However, adaptive hy-
permedia often requires more complex components with detailed
dependencies. AHA! allows us to look at how these very determin-
istic designs contrast with the more free-form OHS approach.

2.1 Description of AHA!
To construct an application with AHA! an author needs to create:

page templates and concepts.
A Page template is an XHTML file that contains conditionally in-

cluded fragments. For each fragment there is a Boolean expression
using concepts and attributes from the user model. This expres-
sion is evaluated at run-time to decide whether the fragment will
be shown to the user. Conditional fragments can be used for many
purposes, including conditional pieces of information (e. g. expla-
nations) or for opening and closing menus and submenus when nav-
igating through a “sitemap”.

Concepts are named entities that have attributes and condition-
action rules for updating attribute values in the user model. The
rules are triggered by a page access and interact with each other to
calculate a “next” stable state space for the user.

The AHA! runtime component is an adaptive engine, consisting
of a set of Java servlets, which maintains a user profile and which
uses that profile and condition-action rules to render the appropri-
ate contents into a HTML file for display. (This rendering includes
selecting colours for links and the conditional inclusion of frag-
ments.)

2.2 The AHA! Approach
AHA! allows for very flexible cooperation between concepts.

(Every concept is allowed to change the state of another concept or
page template and thus trigger a variety of further possible changes.)
However, authoring using these condition-action rules directly is
difficult and can easily lead to rule sets that produce unpredictable
results, or that enter an infinite loop when executed. Therefore an
authoring tool was developed that lets authors define an applica-
tion using a concept hierarchy and concept relationships of some
predefined types [8]. This graph author tool (introduced in AHA!
version 2.0) helps non-expert authors to make use of AHA!’s adap-
tive features in a controlled, structured way. However, it does not
give authors access to the full functionality of AHA!.

2.3 An AHA! Scripting Language
The limited functionality of the graphical authoring tools was not

the only trigger for a new authoring approach. To make use of the
full capacity of AHA, one has to understand the architecture down
to a very detailed low level. AHA! offers an authoring tool that
hides the XML syntax from the author, but the meaning of AHA!’s
condition-action rules and how the adaptive engine executes them
must be understood in order to use the full functionality of AHA!.

An experimental scripting language was designed to allow com-

import ahs.Template.*;
import ahs.Concept.*;
import ahs.Link.*;

Concept SimpleAHS {
Link progressLink =

new Link(SimplePage, "press link for progress");
String Time = new String("Day");
Template SimplePage;

Concept Main {
if ( SimplePage.access ) {
case ( Time ) {

( "Day" ) { Time = "Night"; }
( "Night" ) { Time = "Day"; }

};
}

}

Template SimplePage {
if ( Time = "Night" ) {
println("Good Night.");

};
if ( Time = "Day" ) {
println("Good Day.");

};
progressLink;

}
}

Figure 1: A Simple Adaptive Page in the experimental AHA!
Scripting Language

plex interactions to be encoded easily. AHA! contains a flexible
adaptive engine for a concept and rule structure in which any con-
cept can be programmed to have a sophisticated influence on any
set of concepts and vica versa. Establishing direct relationships be-
tween concepts is relatively easy. However when complexity of the
relations between concepts (and the rules to implement them) in-
creases, the indirect dependencies of templates and other concepts
become very complex to author.

The new scripting language tries to simulate an object oriented
approach for the construction of the AHS. By forcing an author to
program in an object oriented style we gain more manageable con-
cepts, because relationships and meaning are carefully structured
into a programmable element. The AHS is therefore divided into
a hierarchical tree of elements. A tree where each node is a sub-
system, equipped with a program to control its set of subtrees. The
leaves of a tree are used to store user data, such as the current time
or a temporal interaction with the user (a link click or page access).

Figure 1 shows an example of the new scripting language. For
reasons of brevity it is very simple (although more complex scripts
would be similarly structured): the greeting displayed in the page
template changes each time a user clicks on an “increase time” link.

Because the scripting language expresses user navigation and
page construction, it is in fact independent of the AHA! system.
Since the scripting language is a summary of the use and function-
ality of AHA!, it was soon realised that it might form a basis for
some collaboration between AHA! and other systems. Scripts can
be compiled into other hypermedia formats, provided that these are
sufficiently powerful. In particular we looked at using Auld Linky
and producing a Sculptural Hypertext from the original AHA! scripts.

162



3. LINKY AND THE SCULPTURAL
HYPERTEXT PARADIGM

Auld Linky is a structure server that is specifically designed to
be used as an OHS with contextual support. It is a stand alone pro-
cess that manages an XML “linkbase” of association structures ex-
pressed in the Fundamental Open Hypermedia Model (FOHM) [19]
and provides pattern matching services via HTTP, modifying the
structures served according to the declared context of the querying
client.

It is important to note that Auld Linky is not just a server of hy-
perlinks. Auld Linky is part of a new trend in OHS research to
create structural systems that are capable of handling a wide range
of relational structures (in addition to links) such as tours, trails
and virtual documents. A major advantage of modelling hypertext
in this way is that the resulting structures are consistent in that they
may all refer to one another and are all subject to the same pro-
cesses.

While larger systems allow for an open set of operations on their
structure, Linky is specialised to deal with a particular type of struc-
ture filtering based on a declared context. This allows for more so-
phisticated views on the structure than just mixing and matching
linkbases. Contexts in Linky are thus more akin to profiles in AHS
research, or link processes in the HB1/SB1 series of systems [21],
than they are to contexts (or linkbases) in other OHS work.

Users querying Linky do so within a context (defined with open-
ended metadata). Linky then provides a view of all the loaded
linkbases given that context, allowing for unions and intersections
of structure that cannot be handled with multiple linkbases.

Recently we have shown how Auld Linky’s form of contextual
Open Hypermedia can be used to implement many of the tech-
niques common in Adaptive Hypermedia Systems [4]. In fact Auld
Linky can be seen as an Adaptive Engine for generic hypermedia
structures, adapting both navigational links and content. We have
also been exploring the other types of hypertext that become possi-
ble.

At the 2001 ACM Hypertext conference we presented work on a
contextual version of the generic link [22]. At the same event Mark
Bernstein presented a collection of what he described as “strange
hypertexts” which were authored and/or experienced in different
ways to traditional node/link hypertexts [5]. He coined the term
Sculptural Hypertext to describe a hypertext authoring paradigm
where all the nodes are initially interconnected and where the au-
thor uses pre-conditions and actions to remove links at runtime to
produce the final experience.

Auld Linky linkbases of contextual generic links can also be
described as sculptural hypertexts. Figure 2 shows a link from a
sculptural linkbase. The source of the link is variable (will match
everything) which means that this is a link that may be viewed from
any source document. It is the context (the conditions), and not the
location in the writing space, that determines which links the reader
can see. The Behaviour objects store the appropriate actions.

Open Hypermedia can be thought of as non-deterministic be-
cause some of the hyper-structure relies on context and structure
that is not known until runtime. Sculptural hypertext is an extreme
form of this, as all the connections are dependent on context and
none of the final structure emerges until runtime.

We refer to sculptural hypertexts as freeform as they encourage
an author to concentrate on the individual text fragments and their
associated conditions and actions (the context in which they can be
seen and how they effect that context when read).

Sculptural hypertext makes no apologies for the effects of this
approach, rather it is a design methodology that encourages the

SRC DEST

Story
Fragment

Link Context

Behaviour

Association

Binding

Reference

Data

Figure 2: A Contextual Generic Link

author to break free of any high level design and focus only on
isolated glimpses of a writing space.

4. SCRIPTING SCULPTURAL
LINKBASES

Given that AHA! is in practice a state machine, it should be pos-
sible to capture the states and transitions of a given application us-
ing links, conditions and actions. These elements could be used to
produce a sculptural linkbase to be fed into Auld Linky.

The sculptural links produced could be explored separately from
AHA! using a sculptural links renderer or fed back into AHA! at
runtime to be presented in addition to the links that AHA would
normally provide. This is advantageous as the freeform nature of
the sculptural links would mean that links between otherwise sep-
arate AHA! applications would automatically emerge even though
they had not been explicitly designed by the authors of those appli-
cations.

Gathering the set of conditions and calculating appropriate ac-
tions for each state in an AHA! application is non-trivial. The
AHA! engine reasons about the user and the content to deliver. It
contains sequences of assignments and stores the possible transi-
tions to new assignments and sequences. Dependencies within the
script need to be analysed by the compiler in order to generate the
conditions for the sculptural context objects.

Even if we are not able to glean all the implicit conditions con-
tained in the AHA! script we can still produce a useable sculptural
linkbase. However, the sculptural version of the application would
be “looser” than its AHA! counterpart, with more links available to
a reader at any one time.

The two main components of an AHA! application that must be
translated into the linkbase are the Page Templates and Concepts.

4.1 Page Templates
The first “problem” with pages in AHA! (ignoring the template

aspect with conditional fragments for a moment) is that pages are
treated as concepts by the AHA! system but perhaps not considered
as concepts by an author. The consequence is that an author may
define rules in terms of pages instead of “higher level” concepts.
An author may express that Page3 should become available only
after the user has visited Page1 and Page 2. While this can be
directly encoded into sculptural links it results in context objects
that only have meaning in a very restricted scope. What we really
need is for Page3 to say that it is only available once two particular
subjects have been introduced to the user, and for Page1 and Page2
to declare that they introduce those subjects. (This can be done
using AHA! rules, but AHA! does not enforce doing it this way.)

The problem can be summarised by saying that in AHA! se-

163



quences are explicit but their semantics may not be. In other words
the author explicitly defines routes through the writing space but
is not required to define why those routes exist (why one piece of
content sensibly follows another).

In contrast, in Sculptural Hypertext it is the sequence that can
be implicit and the semantics that must be explicit. The order in
which content may be viewed emerges from the interaction of the
conditions and actions.

To successfully derive a sculptural linkbase from an AHA! script
the explicit semantics need to be included. This would require some
changes to the AHA! scripting language in order to encourage au-
thors to declare the semantics of their pages in respect to a partic-
ular vocabulary or ontology. Once this is done all sculptural links
that share that vocabulary, whatever their application of origin, may
be used together.

In AHA! the “template” part of pages are structures that rep-
resent a user’s view on a page. This view, and the fragments that
are included, change according to the state of the system. Although
our previous work with Sculptural links has used static “fragments”
of text as the destination of sculptural links, it is possible to use
other FOHM structures instead. The one that we have used in other
applications and which is the closest equivalent to an AHA! page
template is the virtual document.

The members of the virtual document are designed to be condi-
tionally rendered into a single document for display. Virtual doc-
uments can still be viewed as a single document, the appearance
alters according to the viewer’s context. Templates, while func-
tionally equivalent, are semantically different as they often contain
mutually exclusive members. They represent a framework within
which several different documents may be rendered.

4.2 Concepts and Rules
In AHA! concepts can be related such that changes in one Con-

cept effect the status of others. For example, the concept of cooking
expert might be modified as the result of a user triggering several
lower concepts, such as Thai cooking expert, Italian cooking ex-
pert, etc. These in turn might be triggered as a result of a user ac-
tivating even lower level concepts, for example once they become
familiar with a certain number of recipes.

In Linky context objects are just collections of attribute value
pairs and cannot refer to each other in any way. In order to represent
these interconnected concepts they must be “flattened”. So in our
cooking expert example, every time a page relies on a viewer being
a cooking expert, the context in linky must exhaustively list all the
recipes from all the styles that they must know.

We have previously acknowledged that Linky’s representation of
context (the format of the actual context objects) is a basic one and
have discussed using some form of ontological representation to
enhance it [18].

Allowing context objects to refer to one another would be a first
step towards this and would allow Linky’s contexts to more accu-
rately reflect the AHA! Concept hierarchy. It also requires context
objects to become first class and therefore reusable (currently in
Linky they are anonymous). Experience with AHA! would indi-
cate that this is necessary for any level of complexity in the design
of contexts.

4.3 A Simple Example
In this section we show how the simple example of Figure 1 may

be translated to AHA! Concepts and Page templates, and how it
may be translated to Auld Linky structures.

Figure 3 shows the result of compiling the script into AHA! con-
cepts and an associated page template. The result is actually sim-

plified to make it easier to understand. Not only are the assign-
ments shown in a more compact syntax, the rules are also made
non-propagating to avoid an infinite loop. (In a future version of
AHA! there will be a “case” statement, but for now a correct com-
pilation would require an additional attribute to avoid an infinite
loop while keeping the actions propagating.)

The figure shows that in the translation, code has to be moved.
Any piece of program code that depends on SimplePage.access
must be moved to actions associated with the access attribute of
SimplePage. This is a nice illustration of the fundamental differ-
ence between AHA!’s way of associating actions (that define user
model updates) with the events or with attribute updates, making
the “flow” of updates difficult to trace, whereas in the scripting lan-
guage the actions are written in a program that clearly shows the
order in which attributes of concepts are updated.

...
<concept>

<name>SimpleAHS</name>
<attribute name="Time" type="string" isSystem="false">

<default>Day</default>
</attribute>

</concept>

<concept>
<name>SimplePage</name>
<resource>SimplePage.xhtml</resource>
<attribute name="access" type="bool" isSystem="true">

<generateListItem isPropagating="false">
<requirement>SimpleAHS.Time="Day"</requirement>
<trueActions>

<action>SimpleAHS.Time:="Night"</action>
</trueActions>

</generateListItem>
<generateListItem isPropagating="false">
<requirement>SimpleAHS.Time="Night"</requirement>
<trueActions>

<action>SimpleAHS.Time:="Day"</action>
</trueActions>

</generateListItem>
</attribute>

</concept>
...
<xhtml>

<header>
<title> Example of a page template </title>

</header>
<body>

<if expr="SimpleAHS.Time==Night">
<block> Good Night. </block>

</if>
<if expr="SimpleAHS.Time==Day">
<block> Good day. </block>

</if>
<a href="SimplePage" type = "conditional">
increase time

</a>
</body>

</xhtml>

Figure 3: The Concepts and Page Template generated by the
script in Figure 1

Figure 4 shows the same information encoded as a Linky virtual
document. In this case the bindings have context attached to them
which determines the membership of the document and the data
objects have the behaviour that changes the user context.

164



<association id="vdoc001">
<relationtype>virtualdoc</relationtype>
<structure>list</structure>
<feature>position</feature>
<binding>

<featurevalue feature="position">1</featurevalue>
<reference>

<data><url><![CDATA[Good-day.xml]]></url>
<behaviour><event>ondisplay</event>

<behaviourvalue key="time">night</behaviourvalue>
</behaviour>

</data>
</reference>
<context>

<contextvalue key="time">day</contextvalue>
</context>

</binding>
<binding>
<featurevalue feature="position">2</featurevalue>
<reference>

<data>
<datacontent><![CDATA[a good night]]></datacontent>
<behaviour><event>ondisplay</event>

<behaviourvalue key="time">day</behaviourvalue>
</behaviour>

</data>
</reference>
<context>

<contextvalue key="time">night</contextvalue>
</context>

</binding>
<behaviour>
<event>onAHADisplay</event>
<behaviourvalue key="template">template1</behaviourvalue>

</behaviour>
</association>

Figure 4: The Concept and Page Template from Figure 3 ex-
pressed as a Linky Virtual Document

5. FREEFORM LINKS BETWEEN
DESIGNED APPLICATIONS

In AHA! a closed adaptive engine has to perform all the data
transformations and as a result a freeform collaboration between
separate adaptive applications is currently not possible (although
links towards external web sites and embedded external texts are
supported).

It is possible to design constrained collaboration between appli-
cations by allowing high level concepts to manage the interactions
between their state spaces. These interactions are deterministic and
must be described at compile time. They conform to AHA!’s tight
design principles but do not allow for serendipitous linking (with
automatic links between applications being generated at run-time).

By comparison if we compile two AHA! applications into sculp-
tural linkbases and load them into a single instance of Linky we
find that, as long as the applications share the same concept vocab-
ulary when describing state, the two linkbases automatically merge
into one large application (i. e. when in the middle of one applica-
tion we see not only the links to other pages in the same application
but also links to appropriate pages in other applications).

Our intention was to give AHA! access to this form of oppor-
tunistic linking by expanding the architecture of AHA! with an ad-
ditional linkbase of sculptural links that would be added at runtime.

User
Profile

Templates with
conditional
Contents

AM

DM UM

Context

Web
pageTemplate Enigne

Conceptual EngineAuld Linky

Appropriate
Links

Sculptural
Linkbase

Current
Context

Maintains

Outputs

Concepts

Adaptive Engine

Additional Linky Components

Figure 5: Linky augmenting a running AHA! System

Figure 5 shows how Linky could be used to augment a run-
ning AHA! application. The sculptural linkbase generated from the
script is loaded into Auld Linky. The AHA! adaptive engine main-
tains the current user model (based on the AHA! concepts). When
a page is displayed it translates the current state (user model) into
a Linky context object and uses this as the context for a query to
Linky to retrieve any applicable links.

Linky responds with a set of available links and the adaptive en-
gine then uses the Template Engine to render them on the final page
as navigation choices. If one of the links is followed the Concep-
tual Engine interprets the Behaviour attached to the links. This can
cause difficulties when the link is between two different AHA! ap-
plications. So care must be taken to ensure that AHA! is initialised
properly for the new application.

5.1 Initialising AHA!
Sculptural links allow a user to “drop-in” to the middle of an

AHA! application from an external source (e. g. a page in another
application). This inter-application linking causes two problems:

� How to Render a Page Template. AHA! sometimes stores
several fragments as mutually exclusive views on a single
page template. Since the sculptural links refer to the template
there is no natural way for AHA! to calculate which view is
appropriate to display on arrival.

� Maintaining Consistent State AHA! depends on a consistent
sequence of states. A user who appears suddenly in the mid-
dle of an application will not have visited the expected pre-
vious states and therefore will not have initialised that appli-
cation appropriately.

5.1.1 Rendering Page Templates
In the sculptural linkbase each template is represented by a vir-

tual document, made up of all the possible members of the tem-
plate. The AHA! scripted conditions are transformed into context
objects attached to each member. In this way, in different contexts,
the virtual document has different members.

For each view of a template in AHA! (i. e. combination of valid
members) a sculptural link is authored in the linkbase. The links

165



can only be seen in the correct context and when they are followed
the virtual document is retrieved in the same context and thus the
appropriate view is shown. Unfortunately this is only of use to the
Sculptural Servlet; AHA! still needs to know which page template
to use and which view to render.

To cope with this the script compiler needs to add behaviour ob-
jects to the links and virtual documents in the linkbase. Each virtual
document is tagged with the name of the template in AHA! it de-
scribes (for example, the virtual document in Figure 4 represents
(“Template1”) and each link is tagged with a sequence of true/false
flags describing how AHA! should display it.

When a sculptural link is followed in AHA! the system ignores
the virtual document object and uses these two behaviours to locate
and display the appropriate template.

Figure 6 shows the two sculptural links that would be authored
to the virtual document in Figure 4 (one for each valid view). The
context on the link ensures that they can only be seen in the appro-
priate context (i. e. the link for a Morning greeting is only shown
when the user’s context is Morning).

<association id="link001">
<structure>link</structure><feature>direction</feature>
<description>Morning</description>
<binding missing="variable">

<featurevalue feature="direction">src</featurevalue>
</binding>
<binding>
<reference>

<association id="vdoc001" state="id"/>
</reference>
<featurevalue feature="direction">dest</featurevalue>

</binding>
<context>
<contextvalue key="time">morning</contextvalue>

</context>
</association>
<association id="link002">
<structure>link</structure><feature>direction</feature>
<description>Night</description>
<binding missing="variable">
<featurevalue feature="direction">src</featurevalue>

</binding>
<binding>
<reference>

<association id="vdoc001" state="id"/>
</reference>
<featurevalue feature="direction">dest</featurevalue>

</binding>
<context>
<contextvalue key="time">night</contextvalue>

</context>
</association>

Figure 6: The Sculptural Links corresponding to the Virtual
Document in Figure 4

5.1.2 Maintaining Consistent State
When a user follows a link across applications their state remains

based on the old application and may have no relevance to the new
one. There are two ways to cope with this potential statelessness.

One option is to add details into the script about how to initialise
the state of an application given someone arriving from an external,
unknown position. This retains the encapsulation of applications

but acknowledges that unexpected arrival is possible. An applica-
tion might choose to send the visitor to the start of the application,
or to set up a midway position as best as it could.

A more complex method would be to use the behaviour objects
on the links to record the state that the system should take upon
arrival. This also retains the encapsulation of different applications,
as each application defines all its own incoming links, which are the
ones that would need to contain the state information. When a link
is followed, and before the new application is opened, the system
ensures that the application is initiated for its required successor
state.

After incorporating Linky linkbases in AHA! is it possible to
design the adaptive system with more advanced means to update
the state space. For each state, a user can navigate to a set of page
templates. Because an update of the state space is always related
to the chosen template, the use of templates is limited: for every
state of the system, a user has direct access to zero or one views of
a template. In order to navigate with possibilities of multiple views
of one template, the hyperlink has to be equipped with specific con-
text adaptions. Linky’s structure allows context and behaviour to be
attached to Data objects. With Linky’s hyperlink mechanism, any
initialisation of the system and templates can be reached, indepen-
dent of the current state space.

5.2 Intra-application Linking
By using a separate OHS alongside AHA! it becomes possible

to use the individual applications as components of a larger sys-
tem. The sculptural links connect in a free-form way previously
unconnected hypertext networks (inter-application links). How-
ever, it also creates new connections within those networks (intra-
application links). While this can cause some problems for a tightly
designed system, which now has to now deal with navigational
choices that are not pre-determined, it also offers significant bene-
fits.

In AHA! an author has to store links manually in the set of tem-
plates. While inserting content, each position in the state space
where the template could appear has to be considered. Using a
linkbase helps authors by encouraging them to declare which links
are needed for each state of the system; these intra-application links
are then added automatically.

An improvement offered by incorporating a linkbase is that it
provides the author with new techniques to update the state space.
Previously for each system state and for each template a user had
access to only one available view, which is implicit, but determined.
With a linkbase, the various free-formed links towards the same
template can have different explicit assignment sets and thus each
provides a different view of that template.

When applications are constructed for external access, processes
beyond the scope of the visited application are allowed to update
data elements. To ensure that modifications from an external appli-
cation are actually improvements, any dependencies between data
values should be carefully designed and applications must be able
to restore themselves to a desired state.

Due to the tight constraints that govern most AHA! applications
it is doubtful that many inter-application links would be generated.
Even applications that share a large portion of a subject (such as
applications on different types of cookery) will have large condition
sets, especially for pages intended for viewing late in the adaptive
presentation.

The effectiveness of the sculptural link depends inversely on the
ability of the compiler to calculate conditions based on the original
scripts. For example, if the compiler is able to gather all the con-
ditions correctly than a single application will be identical when

166



AHA Tools

AHA Servlets
Card Shark

Auld Linky

Sculptural Servlet

Deterministic Hypertext Freeform Hypertext
R

u
n

ti
m

e
C

o
m

p
o

n
e

n
t

A
u

th
o

ri
n

g
T

o
o

ls
D

e
si

g
n

M
et

h
o

d
o

lo
g

y

HA3L

A
d

a
p

ti
v

e
E

n
g

in
e

Perl Scripts

Figure 7: Relationship between Methodologies and Systems

run on either AHA! or the Sculptural Servlet and inter-application
linking will probably be very limited.

If the conditions on the sculptural links are looser than the script
intended then it is likely that more inter-application links will be
formed and also that intra-application links will be created that
we’re not intended in the original design. It remains to be seen
where the balance lies between a few appropriate opportunistic
links and a more chaotic tangle.

6. LESSONS LEARNED
Our initial hopes were to draw upon Open Adaptive Hypermedia

work and explore how Auld Linky, an Open Hypermedia System,
might be integrated with an established Adaptive Hypermedia Sys-
tem such as AHA!. We chose to use Sculptural Hypertext as a way
in which AHA! applications might be augmented as well as repli-
cated.

We quickly realised that a major obstacle to this integration were
the very different design styles promoted by Adaptive and Sculp-
tural Hypertext. AHA!’s methodology favours a tightly controlled
and deterministic design, where the system’s behaviour is (ideally)
well known. Sculptural Hypertext (and to a lesser extend Open
Hypermedia in general) emphasises an extensible hyperstructure,
where the author has only limited ability to predict the navigation
options available to a reader at any one time.

The experience has led us to question the relationship between
the two systems and the forms of hypermedia they promote.

6.1 Designed vs. Freeform Hypermedia
Figure 7 shows how we believe AHA! and Auld Linky, and the

methodologies they support, relate to one another. In addition to
AHA! and Auld Linky the diagram also shows Bernstein’s sculp-
tural system, Card Shark [5] and the Open Adaptive System called
HA3L [3].

Card Shark is an application that was designed explicitly to ex-
plore a sculptural, authoring methodology. Its run-time component
and adaptive engine are combined together (into a Flash applica-
tion).

Although the Sculptural Servlet doesn’t have any tools to help
authors create sculptural hypertexts it is built on a common adap-
tive engine, Auld Linky. Because of this it can take advantage of the
reusable, consistent structure and use links that have virtual docu-
ments and tours as destinations. It can also cope with multiple links
to the same destination, analogous in Card Shark to having several

ways in which to play a card.
HA3L (Hypermedia Adaptation using Agents and Auld Linky)

is an agent system that implements an adaptive medical web appli-
cation using Auld Linky as the adaptive engine, thus demonstrating
that Auld Linky is capable of supporting the techniques described
in Brusilovsky’s taxonomy [11, 12]. HA3L has no direct authoring
tools as the hyperstructure it serves was extracted from the XML
pages of an existing system using Perl scripts to uncover the im-
plicit relationships and convert them to FOHM structures. The sys-
tem contains elements of both designed and freeform hypertext but
it is less deterministic than AHA! as it allows for additional hyper-
structure (such as annotations or user authored links) to be added at
runtime.

It is our belief that an OHS which uses context (or one which
has an extensible set of behaviours) can support a full spectrum of
design methodologies, from very deterministic to very freeform.
Such systems do not actually impose any methodological restric-
tions on their use, although it is understandable that this in itself
might be perceived as encouraging less deterministic hypertexts.

What systems such as Linky are missing is the authoring tools to
support the various methodologies. We have discussed this prob-
lem in regard to Sculptural Hypertext before [6]. With Sculptural
Hypertext there is a general issue with generating authoring tools
in that the actual methodology is not yet well understood.

This lack of authoring tools is a direct result of the original objec-
tive of Auld Linky, which was to explore new domains of hypertext
and provide a basis for experimentation. However, it provides a
serious obstacle for those people who are interested in one method-
ology in particular, or who wish to use Auld Linky for serious de-
ployment.

In contrast AHA! specifically promotes the deterministic hyper-
text methodology and provides a complete set of tools to support
this along with the run-time component and adaptive engine needed
to drive the final hypertext.

6.2 Improving AHA! and Auld Linky
The difference between the methodologies of AHA! and Sculp-

tural Hypertext means that there can be no tight integration between
the two systems without loosening some of their fundamental de-
sign principles.

Despite this, understanding the relationship between them is still
a constructive step. It indicates that it would be possible to con-
struct a system such as AHA! on top of a common adaptive engine
like Auld Linky and, as long as the structures used are common
navigational ones (links, virtual documents, etc), generic browsers
would be able to render them, moving towards interoperability be-
tween hypertext systems.

From our experience of trying to calculate links between differ-
ent AHA! applications we believe that AHA! might benefit from
increasing the semantic description of its pages (using a common
vocabulary or even an ontology) so that multiple applications might
be managed together more easily.

In return we are encouraged to build up from the OHS layer and
examine the various methodologies from a common point of view.
Exploring both the type of tools that would be useful and also the
type of hypertexts that are best suited to the different design ap-
proaches.

Although we have used Auld Linky as our example of an appro-
priate structure layer, other more general structural systems such as
Construct [23] or Callimachus [13] could have contextual or adap-
tation services defined for them and then be used in the same way.

Figure 8 shows how a structure server such as Auld Linky might
be used as the adaptive engine of AHA!. The modelling methodol-

167



Run-time
Component

User
Profile

AM

DM UM

Web
page

Renderer (generates
html from the
structures)

Interpreter
(applys behaviours,

maintains user profile)

Auld Linky

Appropriate
Links

Linkbase

Current
Context

Maintains

Outputs

Encoded into
Structures, Contexts +

Behaviours

Figure 8: Auld Linky as the Adaptive Engine of AHA!

ogy of AHA! is used to create a linkbase that encodes the concept
objects as contexts and behaviours. There is still a need for a con-
ceptual engine to interpret the behaviours and a renderer to create
the web pages as output but it is Linky that does all the selection of
the hyperstructure.

While this would be possible at present, Linky’s limited context
object (an anonymous set of attribute/value pairs) would make the
linkbase unwieldy as each context object and behaviour would need
to be very large.

This shows that any context services that are defined at the struc-
ture level, such as Auld Linky’s context model and culling process,
need to support complex concept networks as these are common in
adaptive applications.

7. CONCLUSIONS
In this paper we have presented an initial attempt to integrate

AHA! and Auld Linky as a means to explore the relationship be-
tween them. Although our implementation has not been completely
successful, we have discovered through the design work that this is
because of methodological differences between the two systems, a
conflict between planned, deterministic hypertexts (AHA!’s adap-
tive hypermedia) and freeform hypertexts (Auld Linky and Sculp-
tural Hypermedia in particular).

We have also explained that this divide does not necessarily ex-
tend into the adaptive engine and that a generic structure server
such as a OHS could support both methodologies given the right
tools.

There are currently projects underway that are investigating com-
mon guidelines, techniques and tools for user modelling and com-
mon structures for adaptive hypermedia [14]. The hierarchical con-
cept designs of AHA! and the open extensible contextual structures
of Auld Linky represent valuable lessons learned in these area.

Adaptive Hypermedia is maturing as a research area and we are
now seeing a relationship emerge between it and other hyperme-
dia approaches. We believe that future systems will be able to use
this understanding to exploit the advantages and disadvantages of
each approach, as well as model, author and run hypertexts using
common tools and components.

8. ACKNOWLEDGEMENTS
We would particularly like to thank Wendy Hall for her efforts

towards making this collaboration possible. This research is funded
in part by EPSRC IRC project “EQUATOR” GR/N15986/01, by

the AHA! project of the NLnet Foundation, and by the Socrates
Minerva project ADAPTS (101144-CP-1-2002-1-NL-MINERVA-
M).

9. REFERENCES
[1] Kenneth M. Anderson, Richard N. Taylor, and E. James

Whitehead. Chimera: Hypertext for Heterogeneous Software
Environments. In ECHT ’94. Proceedings of the ACM
European conference on Hypermedia technology, Sept.
18-23, 1994, Edinburgh, Scotland, UK, pages 94–197, 1994.

[2] Keith Andrews, Frank Kappe, and Herman Maurer. Serving
information to the web with hyper-g. The Third International
World-Wide Web Conference. Darmstadt, Germany,
27:919–926, 1995. Published in Computer Networks and
ISDN Systems.

[3] Christopher Bailey. An Agent-Based Framework to Support
Adaptive Hypermedia. PhD thesis, Department of
Electronics and Computer Science, University of
Southampton, UK, 2002.

[4] Christopher Bailey, Wendy Hall, David E. Millard, and
Mark J. Weal. Towards Open Adaptive Hypermedia. In
Proceedings of the International Conference on Adaptive
Hypermedia and Adaptive Web Based Systems, Malaga,
Spain., May 2002.

[5] Mark Bernstein. Card shark and thespis: exotic tools for
hypertext narrative. In Proceedings of the ’01 ACM
conference on Hypertext, Aarhus, Denmark, pages 41–50.
ACM Press, 2001.

[6] Mark Bernstein, Mark J. Weal, and David E. Millard. On
Writing Sculptural Hypertext. In Proceedings of the ’01
ACM conference on Hypertext, Aarhus, Denmark, pages
65–66, 2001.

[7] P. De Bra and I. Calvi. Aha! an open adaptive hypermedia
architecture. The New Review of Hypertext and Multimedia,
4:115–139, 1998.

[8] Paul De Bra, Ad Aerts, and Brendan Rousseau. Concept
Relationship Types for AHA! 2.0. In Proceedings of
E-Learn’02, Montreal, Canada, AACE, 2002.

[9] P. Brusilovsky, J. Eklund, and E. Schwarz. Web-based
education for all:A tool for developing adaptive courseware.
In Computer Networks and ISDN Systems. Proceedings of
7th International World Wide Web Conference, April 14- 18,
30 (1-7), pages 291–300, 1998.

[10] P. Brusilovsky, E. Schwarz, and T. Weber. A tool for
developing adaptive electronic textbooks on www. In
Proceedings of the AACE WebNet’96 Conference, pages
64–69, 1996.

[11] Peter Brusilovsky. Methods and techniques of adaptive
hypermedia. In User Modelling and User-Adapted
Interaction : Special Issue on adaptive hypertext and
hypermedia, volume 6, pages 87–129,
Berlin/Heidelberg/New York, 1996. Kluwer academic
publishers.

[12] Peter Brusilovsky. Adaptive hypermedia. User Modeling and
User-Adapted Interaction, Ten Year Anniversary Issue,
11:87–110, 2001.

[13] Dimitris Christodoulakis, Michael Vaitis, Athanasios
Papadopoulas, and Manolis Tzagarakis. The callimachus
approach to distributed hypermedia. pages 47–48, 1999.

[14] A.I. Cristea and P. De Bra. ODL Education Environments
based on Adaptivity and Adaptability. In Proceedings of
E-Learn’02, Montreal, Canada, AACE, 2002.

168



[15] Andrew M. Fountain, Wendy Hall, Ian Heath, and Hugh C.
Davis. MICROCOSM: An Open Model for Hypermedia
With Dynamic Linking. In A. Rizk, N. Streitz, and J. André,
editors, Hypertext: Concepts, Systems and Applications
(Proceedings of ECHT’90), pages 298–311. Cambridge
University Press, 1990.

[16] Kaj Grønbæk and Randall H. Trigg. Design issues for a
Dexter-based hypermedia system. Communications of the
ACM, 37(3):40–49, February 1994.

[17] Norman Meyrowitz. Intermedia: The architecture and
construction of an object-oriented hypermedia system and
applications framework. In OOPSLA ’86. Conference on
Object-Oriented Programming Systems, Languages, and
Applications, pages 186–201, September 1986.

[18] Danius T. Michaelides, David E. Millard, Mark J. Weal, and
David C. De Roure. Auld leaky: A contextual open
hypermedia link server. In Siegfried Reich and Kenneth M.
Anderson, editors, OHS7, SC3 and AH3, Proceedings of the
..., Published in Lecture Notes in Computer Science, (LNCS
2266), Springer Verlag, Heidelberg (ISSN 0302-9743), pages
59–70, 2001.

[19] David E. Millard, Luc Moreau, Hugh C. Davis, and Siegfried
Reich. FOHM: A Fundamental Open Hypertext Model for

Investigating Interoperability Between Hypertext Domains.
In Proceedings of the ’00 ACM Conference on Hypertext,
May 30 - June 3, San Antonio, TX, pages 93–102, 2000.

[20] Wolfgang Nejdl and Martin Wolpers. Kbs hyperbook - a
data-driven information system on the web. In Proceedings
of the The Eighth International World Wide Web Conference,
Toronto, Canada, 1999.

[21] John L. Schnase, John L. Leggett, David L. Hicks, Peter J.
Nuernberg, and J. Alfredo Sánchez. Design and
implementation of the HB1 hyperbase management system.
Electronic Publishing—Origination Dissemination and
Design, 6(1):35–63, June 1993.

[22] Mark J. Weal, David E. Millard, Danius T. Michaelides, and
David C. De Roure. Building Narrative Structures Using
Context Based Linking. In Proceedings of the ’02 ACM
conference on Hypertext, Maryland, U.S.A., pages 37–38,
2002.

[23] Uffe Kock Wiil and Peter J. Nürnberg. Evolving Hypermedia
Middleware Services: Lessons and Observations. In
Proceedings of of the 1999 ACM Symposium on Applied
Computing (SAC ’99), San Antonio, TX, pages 427–436,
February 1999.

169


