ALAT: Finally an Easy To Use Adaptation Authoring Tool

Paul De Bra, Natalia Stash,
Wouter Boereboom, Celine Chen
Dept. of Math. and Computer Science
Eindhoven University of Technology (TU/e)
Eindhoven, the Netherlands
{p.m.e.d.bra, n.v.stash}@tue.nl,

{w.boereboom, j.chenyuexu}@gmail.com

ABSTRACT

Research papers about adaptive hypermedia systems, frameworks
or applications tend to focus on the end-result: how the applica-
tions are used by end-users, how adaptation improves user satisfac-
tion, learning, etc. What they do not describe is how difficult and
labor-intensive the creation of the applications can be. In this paper
we present ALAT, a new authoring tool for the Generic Adapta-
tion Language and Engine GALE, developed at the TU/e. ALAT
is specifically designed in close collaboration with an educational
software company to ensure that specifying the desired adaptation
can be done by non-technical authors. This is achieved by combin-
ing a simple responsive authoring-interface with underlying tem-
plates that help generate the adaptation code for GALE.

CCS Concepts

eInformation systems — Web applications; Web interfaces;
eHuman-centered computing — Interactive systems and tools;
Interaction design; Systems and tools for interaction design;

Keywords

authoring, adaptive hypermedia, interface design, usability

1. INTRODUCTION

Adaptive hypermedia [1, 14] nowadays comes in two flavors:
expert-driven and data-driven. Everyone is experiencing automatic
personalization on many web-based services (like YouTube, Face-
book, Amazon, etc.). This is all realized through data-driven adap-
tation. In special-purpose applications, such as an on-line course
text that is offered as hypermedia (through a website), an expert,
skilled author or pedagogical designer needs to define adaptation
rules, not purely based on content and navigation paths followed
by (other) users, but based on insight as to which navigation or
learning order between learning objects or concepts makes sense.
In some cases this is not universal advice but depends on personal
traits such as a cognitive or learning style.

Special purpose systems have been created for adaptive learn-
ing, Interbook [2] being one of the oldest but still best known ex-
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

HT’16 July 10 - 13, 2016, Halifax, NS, Canada

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4247-6/16/07. .. $15.00

DOIL: http://dx.doi.org/10.1145/2914586.2914627

Joris Den Ouden, Martijn Kunstman,
John Oostrum, Egon Verbakel
de Roode Kikker
. Eindhoven, the Netherlands
{j.den.ouden, m.kunstman, j.oostrum,

e.verbakel}@deroodekikker.nl

amples. An author would create an annotated Word file: a course
text with delineated sections, each associated with outcome con-
cepts you learn about when studying the section and background
concepts that are “prerequisites” for studying that section. A com-
piler would then turn this into an adaptive website. The possible
forms of adaptation were all hardcoded in the system. Authoring
was easy but the adaptation possibilities limited.

At the other extreme general purpose systems have been created,
like AHA! [6] and its successor GALE [17, 16]. In AHA! and even
more in GALE nothing is hardcoded. The user modeling and adap-
tation are defined using the GALE adaptation language GAM that
allows arbitrary Java code to be used in the rules. Creating con-
tent (e. g. learning material) is completely separate from defining
the adaptation and can be done using any HTML authoring tool.
In line with other adaptive hypermedia research papers, when we
published reference [17] we emphasized what GALE was capable
of and ignored the authoring process. The (adaptive!) thesis [16]
describes the adaptation authoring language but no easy to use tools
for “generating” adaptation in this language.

In Section 2 we briefly review different authoring approaches
and interfaces that were created for adaptive hypermedia, includ-
ing the GRAPPLE authoring tool GAT [7] we helped to create.
We highlight good ideas and problematic ones in different author-
ing tools. Section 3 briefly recalls the adaptation functionality of
GALE to illustrate the challenge to make that functionality avail-
able to non-technical authors. Section 4 describes the new author-
ing tool ALAT. The aim of this description is to show how most of
the adaptation power of GALE can be made usable to non-technical
authors through the new authoring tool.

2. ADAPTIVE HYPERMEDIA AUTHORING

When the first adaptive course at the TU/e [3] was turned into
the more generic adaptive system AHA! adding adaptation rules
became difficult. An authoring tool was created that completely
separated the creation of content from that of conceptual structure.
This separation has become the standard way of authoring in all
other authoring tools we refer to in this section (and in many more).
As AHA! and later also GALE just serve “pages” like a Web server
(and in fact as a Web server extension) we can allow users to use
whichever is their favorite Web page creation tool.

The Graph Author for AHA! was first described in [5]. A snap-
shot of this interface is shown in Figure 1. The figure shows two
panes: the left pane shows part of a hierarchy of concepts, also
called a domain model. The right pane shows all “pedagogical
rules” in what we call the adaptation model. The adaptation rules
that implement the behavior are drawn from a template. The design
of such templates is left to an expert. Authors just “draw arrows”.
When the domain and adaptation models become much larger than

£ Graphical Author tool for AHA! applications v3.0 =lolx|

File Concept Advanced Help
nls[a[a] [n[~a] [a[a]a

ort: ‘cnum'l -

=3 ahadesign

) intro
& [architecture feasoning onditionalobjer
9] adaptivepresentation . S L =

<= (] conditionalobject - uepicamseniaion "

- S stte s e ~

o [stabilty s e ..

‘ .

& T inksdaptation |

[rayout ! e
& [authoringtacls i K

[retatedwark F i ;

) sonclusions: 5 y

weei” T il
[reterences - i
gt
o
S
B
frd

[Java Applet Window

Figure 1: The Graph Author (tool for AHA!).

o 200
Add Concept Add Relationship | Zoom L | Template |

Ying_Mikyway

Eta Carinae

st
Nebula o

Sun

Planet

Mercury Venus Eath Mars Jupter saturn Uranus Neptune

Oberon

furcps L] []
Moon_Earth . Titan Triton

lo
Phobos Titania

Miranda
Ganymede

Deimos o e @

Callisto Umbriel

Moon

Figure 2: The Domain Tool in GAT.

in the figure the accordion menu keeps the domain model readable
whereas the graph representing the adaptation model will become
cluttered and unreadable.

In the European research project GRAPPLE' GALE [16, 17]
was created as successor to AHA! and a corresponding graphical
authoring tool GAT [7] was created as well. The GAT tool consists
of three parts: a domain tool, a pedagogical relationship tool and a
course tool. Figure 2 shows the graph part of the domain tool and
Figure 3 shows the graph part of the course tool.

The Domain Tool? in GAT allows for labeled binary relations
between concepts. The domain model can thus become a richly
interconnected collection of concepts, much like a domain-specific
ontology. It can be much richer than the purely hierarchical domain
model shown by the GraphAuthor tool in figure 1. At the same
time the graph presentation (instead of an accordion menu) quickly
becomes cluttered and unreadable as the domain model grows.

For the adaptive part of an application GAT uses the Course

!See http://grapple.win.tue.nl/ for a description and deliverables.
>The Domain Tool was mainly developed by Giunti Labs.

Course: MilkyWay-CAM

Figure 3: The Course Tool in GAT.

Tool® (initial design ideas described in [13]), shown in figure 3.
It uses a very compact graphical representation for a collection of
adaptation rules that would make for a huge graph in the GraphAu-
thor, but it does not make it easy to see which incoming and outgo-
ing pedagogical relations (like prerequisites) each concept has.

During a course on adaptive hypermedia students were given
a choice of using GAT to develop a GALE application or using
the underlying adaptation language GAM directly. Students using
GAT were generally less happy than students using GAM. Still,
when in the next run of this course we asked students to only use
GAM and evaluate it, writing the adaptation rules was found to be
the most technically challenging part of authoring [15]. Hence the
need for a new authoring tool described in this paper.

Our experience mirrors what we find about authoring tools cre-
ated in other projects. The creators of ACTSim [11] made the cre-
ation of adaptive educational soft skill simulations easy by creating
a limited special-purpose tool. Still, they too use a graph presenta-
tion that becomes harder to view as the models become larger.

WOTAN [9] combines an indented list hierarchy (or accordion
menu) with an interface representing the current project in a di-
rected graph. To some extent that corresponds to the domain and
adaptation model representation in the Graph Author. The graph
presentation uses automated layout and clustering of groups of nodes
to prevent visual clutter. WOTAN also “cheats” in its indented list
view: concepts can have multiple parents and therefore appear mul-
tiple times in the indented list.

We also looked into MOT 3.0 [8] that is based on the five-layer
LAOS framework [4] and offers an editor that is essentially a text
editor for writing adaptation rules, at least as difficult to use as the
GAT pedagogical relationship tool for writing adaptation rule tem-
plates.

Finally we also considered AMAS [12] that focuses on ease of
authoring and usability by non-experts. Subsequent designs, de-
scribed by Gaffney, Conlan and Wade in [10] focused on the user
experience and led to a graph-based interface that again appears to
work well on small examples but we question whether it would be
usable with large graphs.

The investigation into these different authoring environments has
taught us that an interface for displaying and editing a concept hi-
erarchy appears to work well and scales well with growing appli-
cations, and that displaying a graph of relations between concepts
always leads to visual clutter with larger models.

3The Course Tool was mainly developed at the University of War-
wick.

3. GALE ADAPTATION FUNCTIONALITY

ALAT has been designed together with an educational company
(developing a platform for on-line courses mostly for grade school)
and the interface design therefore has to be suitable for authors of
such learning material. But ALAT is also, and perhaps even first
and foremost a new authoring tool for GALE [16]. This means that
it tries to enable authors to use as much as possible of the user
modeling and adaptation functionality GALE offers, but without
requiring any technical skills.

Rather than explain GALE’s functionality using GALE’s own

adaptation language (GAM) described in [16, 17] we use the blueprint

format used by ALAT. In GALE an application (or course) consists
of concepts. Each concept has a number of (named) properties that
have a fixed value and (named) attributes that have a value that is
computed through rules. Typical use of these attributes (of which
the names and meaning can be chosen arbitrarily) includes:

e a Boolean attribute suitability to check that all prerequisites
for the concept are satisfied.

e an integer attribute visited to count how many times the user
has visited the concept.

e areal (Double) attribute knowledge to keep track of the user’s
knowledge of the concept.

In GALE the attribute values can be updated when certain events
occur (like the user visiting a concept) or can be computed from the
values of other attributes (and possibly properties).

Finally, concepts can also have relationships between them. In
GALE there are two predefined relationships:

e When concept A extends concept B it inherits all the prop-
erties and attributes (from B). We can define one “generic”
concept with properties and attributes and then have all other
concepts extend it.

e Through the parent relationships we build a hierarchy of con-
cepts. GALE also offers views to present (parts of) the con-
cept hierarchy as a navigation menu (for instance as an ac-
cordion menu).

In ALAT we use concept blueprints (templates) that define a
structure common to all concepts of an application and that define
some special concept types with additional structure for those. A
course can contain concepts to be studied and concepts that repre-
sent tests for instance. The author selects a type for each new con-
cept and does not need to know anything about the code that defines
the behavior of concepts of that type. The selection list (in ALAT)
that is offered to authors to choose a concept type is generated from
the blueprint and can thus be different for different applications (or
application areas) for which ALAT is used as authoring too. Below
we show an (incomplete) example blueprint template. As you can
see the blueprints are written using JSON syntax.

{

"defaultAttributes": [
{
"name":"suitability",
"type":"Boolean",
"value":"true"

"name":"knowledge",
"type":"Double",
"Value" . IIO",
"operator":"AVG"

b

1,
"conceptTypes": [

"name":"text-topic",
"default_attributes": [
{

"name":"info",
"type" . "String" ,
"value":"This is an information concept!"

b

] 4

"default_rules": [
"visited",
"knowledge_update",

The "default_rules" refer to what is defined in a different blueprint
for which we show a small (incomplete) example:

{
"def_att_rules": [
{
"name":"hasprerequisite",
"type":"binary",
"target":"suitability",
"tooltip":
"Target concept must be learned
before source is recommended.",
"code":"${%target$#knowledge} > 0.8",
"operator":"and"
}
]I
"persistent_att_rules": [

{

"name":"visited",
"type" . "unary" ,
"properties": [

{
"name":"visited",
"type":"Integer",
"defval" B nn
}
:IV
"tooltip":"stores number of concept
visits in ‘visited’",
"code":"#[visited] :Integer event +
‘if (${#suitability}) { ${#visited}++;} "
}
]I
"def_relations": [
{
"name":"rotatesAround",
"tooltip":"source concept rotates
around the target object."

The blueprint contains three parts:

e The first part (def_att_rules) corresponds to attributes whose
value is computed (whenever needed). For these attributes
their value is not stored permanently but the code to com-
pute that value is stored. The concept’s attribute for which
the value is computed is “suitability” (called the “target” at-
tribute). The code fragment computes the suitability by check-

Milkyway

A course about our milkyway!

v Milkyway n ﬂ

e Planet w
[Neplune n
[=4 Satum m
L4 Jupiter m
(¥4 Venus m
L3 Uranus m
» Mars m
P Earth m
P& Mercury m

Y Nepula m

b Star m

b Moon m

Figure 4: Hierarchical presentation in ALAT.

ing whether the knowledge (attribute value) of the target con-
cept is greater than 0.8. So if concept A has concept B as a
prerequisite then the suitability of A depends on the knowl-
edge of B being greater than 0.8. If A has several prereq-
uisites these pieces of code are combined using the logical
“and” operator to form the complete code for A’s suitability.

e The second part (persistent_att_rules) defines how an event
triggers an update to some attribute value. That value is
stored permanently. The example defines a rule called “vis-
ited” which defines the updates for an attribute that is also
called “visited”. The code fragment increments the visited
attribute when the concept is visited while being suitable.
The event code for an attribute is actually a piece of Java
code. Several rules can contribute to the code, and each piece
of code is added to the event code. Hence the “event +” part
which indicates that the code is concatenated (as a string) to
the already existing event code.

e The third part (def_relations) just defines relations that have
no associated behavior. They can be used in code fragments
for attributes or other relations and for generating adaptation
in the (page) presentation. The “rotatesAround” relation be-
tween planet and star can be used in generating part of the
page describing what a star or a planet is.

When using ALAT the “adaptation model” is assembled from the
small code fragments shown in the blueprint. This “assembly” does
not provide the complete adaptation power of GALE but offers the
same power that GAT did. In all the examples of GALE applica-
tions we have seen so far, some of which are mentioned in [15], the
code that was hand-written in GAM could all have been produced
by ALAT in a relatively straightforward way.

4. ALAT: THE NEW GALE AUTHORING
TOOL

ALAT is the result of many brainstorming sessions, followed by
mockup design by a professional designer, followed by many iter-
ations of coding, testing and refining. As the look and feel of the

Settings of Planet-X.

Show advanced:

Name: Planet-X

Attributes : Name Value Type Delete
next next topic string DELETE
info milkyway_textahtmi string DELETE
image img/img_milkyway.jpg string DELETE

+

Relations and Expressions: Source name Rule name Target name Delete
Al

+ +

Resource :

Figure 5: Concept Details in ALAT.

final tool still stays quite close to the earlier mockup design we il-
lustrate ALAT using screen shots from the actual tool only. The
tool not only completely hides the technical details you saw in sec-
tion 3 but even does not require any knowledge of these details. The
blueprints contain fooltips that are shown in ALAT and that should
be written in a language the non-technical author understands.

4.1 Creating and Navigating the Concept Hi-
erarchy

Because of what we learned in section 2 ALAT does not use a
graph-like domain or adaptation model presentation but shows a
hierarchical domain structure through an accordion menu. There is
a “flat” and a “hierarchical” view. We only show the hierarchical
one, in figure 4. At each level that is shown there is a blue bar with
+ button to add a concept at the corresponding level, an X button
to delete (a concept or complete sub-hierarchy) and three dots to
access concept details.

From De Roode Kikker we learned that in school a teacher may
wish to offer only part of a course (purchased from a publisher) to
his students. For this purpose ALAT places a checkbox in front
of each concept. When the teacher unchecks some boxes these
concepts (and the whole subtree below them, if applicable) will
automatically not appear in the course and all associated adaptation
rules will not be included in the generated adaptation model.

4.2 Editing Concept Details

When an author adds a concept a small dialog box appears to
enter the concept name and type. The “conceptTypes” from the
blueprint determines the possible choices for the type. The concept
details dialog that follows is shown in figure 5 in which a newly
Milkyway concept named “Planet-X" is shown. Comparing this di-
alog box to the first blueprint from section 3 it is clear that most in-
formation is hidden. The attributes and rules that are common to all
concepts are hidden. Only the attributes that are added for the cho-
sen concept type are shown. In the Milkyway example from [17]
these are “next”, “info” and “image”.

In figure 6 we show the concept details for the concept “Earth” in
which the author has added attributes and relationships. The dialog
box contains four different parts:

e Name: Each concept must have a name that is unique within
the course. That name is given when the concept is created
but it can be changed later through this dialog box (as long
as it stays unique).

Settings of Earth.

Show advanced:

Name: Earth

Attributes : Name Value Type Delete

next Mars string DELETE
image img/img_earth.jpg String DELETE
info earth_text.xhtml string DELETE
ordler 3 Integer DELETE

+

Relations and Expressions: Source name Rule name Target name Delete
All
+

Moon_Earth isMoonOf Earth DELETE
Earth isPlanetOf Sun DELETE
Moon_Earth hasPrerequisite Earth DELETE
Earth hasPrerequisite-all Planet DELETE
Earth hasPrerequisite sun DELETE

+

Resource : xmli/planet_instance_template.xhtml

Figure 6: Concept Details for “Earth” in ALAT.

o Attributes: The attributes that are common to all concepts are
not shown. The attributes “next”, “info” and “image” follow
from the Milkyway concept type and the attribute “order”
was added by the author through this interface. The hid-
den standard attributes can be made visible by ticking the
“show advanced” checkbox. Unlike the additional attributes
the standard ones cannot be deleted as doing so would break

standard adaptation rules associated with them.

e Relations and Expressions: again, the standard ones com-
ing from the blueprint are not shown unless the “show ad-
vanced” checkbox is ticked. They would include “visited”
and “knowledge update” for instance. In adaptive courses a
concept may have some prerequisites, and in our example the
concept Earth has two prerequisites: Planet and Sun. We not
only show some prerequisites but also added some more rela-
tionships (isMoonOf and isPlanetOf). Binary relations have
a source and target concept and are shown in the Concept
Details window for both concepts. We see for instance that
Moon_Earth has Earth as a prerequisite and that Moon_Earth
has an isMoonOf relationship with Earth. When adding a re-
lationship it is selected from the list (that shows All in the
figure). This list is determined by the second blueprint we
showed in section 3 and can be extended with new relation-
ships (that then cannot have associated code). Relationships
are always created for the source concept. The dialog box
shown in figure 7 is used to select target concepts. You can
select multiple concepts and ALAT will create a relation for
each of them.

e Resource: this final element is the name of the file to be used
for the page. The resources can come from any website and
need not reside on the server on which the adaptation model
is stored.

The authoring process for the domain and adaptation model of
an application/course ends with a simple press of the “generate”
button. ALAT generates a file called “concepts.gam” in the main
directory for the course.

Neptune ~
Saturn

Jupiter
Venus

v “;”_« »

v

Figure 7: Dialog box to select concepts for a relation in ALAT.

S. DISCUSSION AND FUTURE WORK

Designing authoring interfaces for adaptive (educational) hyper-
media has been a process of trial and error throughout the past
two decades, not only for the TU/e research group but as section 2
has shown also for other researchers. It has also not been widely
published about. Publications concentrate on the end-user experi-
ence, not on the process of designing or creating the applications
or frameworks.

In the design of ALAT we have worked closely with an educa-
tional software company. This has confirmed that it is essential to
make an authoring interface very simple. So we opted for showing
a concept hierarchy, hiding all adaptation-related details from the
authors (through blueprints), yet allowing experts to add features
(attributes, relations, adaptation rules) if desired. The interface
is guided by the blueprints in deciding what to show in selection
boxes and which attributes and relations to provide. The ability to
“deselect” parts of an application was also an explicit wish from
teachers using courses that have been prepared (sold) by a pub-
lisher.

While we are confident that ALAT is much easier to use than
any authoring interface we created in the past we still need to run
extensive evaluations. An authoring experiment is planned in the
second quarter of 2016, not in time for this paper but for a future
publication.

We also plan on adding an interface for a graph visualization tool
so that the graph of relationships between concepts can be shown.
But based on our previous experience we intend to use that graphi-
cal interface as “read-only”, not as an editor.

The attentive reader may have noticed that in this paper we have
only considered adaptation based on what the individual user has
done. Group adaptation, or collaborative filtering, has not been
considered. This is not a limitation of the authoring interface ALAT
per se but is a restriction built into GALE. Although GALE can
(and does) include the user’s identity in its data model, as what is
called an “entity” and can handle groups as entities and can have
adaptation rules that update the “user model” for such a group en-
tity GALE currently has a deliberate limitation that an entity cannot
access the user model of another entity. This guarantees that every
user model is kept private. Only when GALE gains a controlled
way to access group entities can we consider making group adap-
tation available in the authoring process as well. We are looking
forward to our experiments with different author- and user-groups
to find out which desires for this and possible other future exten-
sions pop up.

Readers who like to experience ALAT first hand and experiment
can visit http://gale.win.tue.nl/ALAT and register. The tool allows
you to create new adaptive applications, while keeping the (pages)
on your own Server.

6. ACKNOWLEDGMENTS

This research is partly funded by the City of Eindhoven in the
“Adaptive Learning” project. Additional funding came from the
Eindhoven University of Technology and from De Roode Kikker.

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

REFERENCES

P. Brusilovsky. Adaptive hypermedia. User Modeling and
User-Adapted Interaction, 11(1-2):87-110, 2001.

P. Brusilovsky, J. Eklund, and E. Schwarz. Web-based
education for all: a tool for development adaptive
courseware. Computer Networks and ISDN Systems,
30(1-7):291 — 300, 1998. Proceedings of the Seventh
International World Wide Web Conference.

L. Calvi and P. De Bra. Proficiency-adapted information
browsing and filtering in hypermedia educational systems.
User Modeling and User-Adapted Interaction, 7(4):257-277,
1997.

A. Cristea and A. De Mooij. Laos: Layered www ahs
authoring model and their corresponding algebraic operators.
In The Twelfth International World Wide Web Conference,
Alternate Track on Education, 2003.

P. De Bra, A. Aerts, B. Berden, B. de Lange, B. Rousseau,
T. Santic, D. Smits, and N. Stash. Aha! the adaptive
hypermedia architecture. In Proceedings of the fourteenth
ACM conference on Hypertext, pages 81-84. ACM, 2003.

P. De Bra, D. Smits, and N. Stash. The design of aha! In
Proceedings of the seventeenth ACM conference on
Hypertext, page 133. ACM, 2006, adaptive version at
http://aha.win.tue.nl/ahadesign/.

P. De Bra, D. Smits, K. van der Sluijs, A. Cristea, and

M. Hendrix. Grapple: Personalization and adaptation in
learning management systems. In Proceedings of the
ED-MEDIA World Conference on Educational Multimedia
and Hypermedia, pages 3029-3038. AACE, 2010.

J. Foss and A. Cristea. The next generation authoring
adaptive hypermedia: Using and evaluating the mot3. 0 and
peal tools. In Proceedings of the twentyfirst ACM conference
on Hypertext, pages 83-92. ACM, 2010.

M. Freire and P. Rodriguez. Comparing graphs and trees for
adaptive hypermedia authoring. In Proceedings Third
International Workshop on Authoring of Adaptive and
Adaptable Educational Hypermedia (A3EH; in conjunction
with AIED), pages 4-12, 2005.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

C. Gaffney, O. Conlan, and V. Wade. The amas authoring
tool 2.0: A ux evaluation. In Proceedings of the twentyfifth
ACM Conference on Hypertext and Social Media, pages
224-230. ACM, 2014.

C. Gaffney, D. Dagger, and V. Wade. Authoring and
delivering personalised simulations-an innovative approach
to adaptive elearning for soft skills. Journal of Universal
Computer Science, 16(19):2780-2800, 2010.

C. Hampson, O. Conlan, and V. Wade. Challenges in
locating content and services for adaptive elearning courses.
In Eleventh IEEE International Conference on Advanced
Learning Technologies (ICALT), pages 157-159. IEEE,
2011.

M. Hendrix, P. De Bra, M. Pechenizkiy, D. Smits, and

A. Cristea. Defining adaptation in a generic multi layer
model: Cam: The grapple conceptual adaptation model. In
Third European Conference on Technology Enhanced
Learning (EC-TEL), pages 132—-143. Springer LNCS 5192,
2008.

E. Knutov, P. De Bra, and M. Pechenizkiy. Ah 12 years later:
a comprehensive survey of adaptive hypermedia methods
and techniques. New Review of Hypermedia and Multimedia,
15(1):5-38, 2009.

V. Ramos, P. De Bra, and d. Smits. Gale extensibility
evaluation : a qualitative approach. In World Conference on
E-Learning in Corporate, Government, Healthcare and
Hither Education (E-Learn), pages 296-305, 2013.

D. Smits. Towards a Generic Distributed Adaptive
Hypermedia Environment. PhD thesis, Eindhoven University
of Technology, adaptive version on
http://gale.win.tue.nl/thesis/, ISBN 978-90-386-3115-8,
2012.

D. Smits and P. De Bra. Gale: a highly extensible adaptive
hypermedia engine. In Proceedings of the twentysecond
ACM conference on Hypertext, pages 63-72. ACM, 2011.

