
Authoring and Management Tools for Adaptive
Educational Hypermedia Systems: the AHA! case study

Paul de Bra1, Natalia Stash1, David Smits1,
Cristóbal Romero2, Sebastián Ventura2
1 Eindhoven University of Technology (TU/e),
PO Box 513, Eindhoven, The Netherlands

{debra}@win.tue.nl
2 Córdoba University, Campus Universitario de Rabanales,

14071, Córdoba, Spain
{cromero, sventura}@uco.es

Abstract. Creating and maintaining adaptive educational applications is a hard
work for teachers and developers. In order to help the author to perform these
tasks the e-learning systems must provide authoring and management tools. In
this chapter we are going to describe several useful tools for working with
adaptive educational hypermedia systems, concretely with the AHA! system.
AHA! is an well-known open source general-purpose adaptive hypermedia sys-
tem. In the current AHA! distribution version there are some general adaptive
author tools as Concept Editor, Graph Editor and Form Editor, all accessible
through the overall Application Management Tool. There is also a specific edu-
cational tool: the Test Editor (and the associated Test Engine) and we are now
developing some others such as a Course Editor and a Mining tool. In this
chapter we are going to describe the AHA! system and the functionality of each
of these authoring and management tools intended to help to the teachers and
application developers.

1 Introduction

In the past years, we have seen an explosive growth in the use of web-based technol-
ogy in distance learning systems. At the same time, more and more artificial intelli-
gence techniques have been integrated into these systems to improve students’ learn-
ing, turning them into Intelligent Tutoring Systems. The union of web-based hyper-
media with Intelligent Tutors has led to the current Web-based Adaptive Educational
Hypermedia Systems that allow adapting the teaching to each individual student [10].
Adaptive Educational Hypermedia (AEH) is an alternative to the traditional one-size-
fits-all approach in web-based education. It combines the concepts of hyper-
text/hypermedia with user modeling and user adaptive systems to adapt the hypertext
to the needs of each particular student. Adaptive hypermedia systems (AHS) [7]
started to appear around 1990, when researchers combined the concepts of hyper-
text/hypermedia with user modeling and user adaptation. The first and foremost ap-

plication of adaptive hypermedia was in education, where the navigational freedom of
hypermedia was introduced into the area of intelligent tutoring systems. But since
then applications in information systems, information retrieval and filtering, elec-
tronic shopping, recommender systems, etc. have been realized. The advent of the Web
has made the use of (basic) hypermedia facilities easier, through the use of HTML.
However, creating adaptive hypermedia on the Web requires server-side functionality
for user modeling and for the adaptive generation of (HTML) pages. Until recently,
almost every adaptive hypermedia application was based on a special-purpose (server-
side) system. The development of adaptive hypermedia applications and systems has
had a one-to-one relationship. This has seriously hindered the development of interest-
ing new adaptive applications by researchers with insufficient skills or financial means
to develop their own adaptive hypermedia system. The potential benefits of adaptive
educational hypermedia for educational applications should do that adaptive hyper-
media were so wide-spread and widely accepted as we would expect. One of the
reasons can be due to the difficulties in authoring. So, it is necessary to provide au-
thoring and managements tools in order to help to the teacher or application devel-
oper in performing a multitude of authoring tasks.

Nowadays, there are several modern authoring systems that can used by non-
programming to develop adaptive educational hypermedia [11]. Authoring tools can
be toolkits, systems or shells. There are two major approaches used by authoring
tools: the markup language that uses a special authoring user interface. The main task
of these tools is to help to the developer to author the content objects and to specify
the links between them. However, in order to maintain an AEH application it is nec-
essary to perform many more tasks such as to develop assessments and activities to
evaluate students, to visualize and analyze the students’ usage information, to modify
and improve the course content and structure, to do back-up and to reuse educational
material of other systems, etc. So, it is necessary to provide authoring and manage-
ment tools for each of these tasks.

A well known AHS system is AHA! [19] [20] [22] [23], or Adaptive Hypermedia
Architecture. It was designed and implemented at the Eindhoven University of Tech-
nology, and sponsored by the NLnet Foundation through the Adaptive Hypermedia
for All. (AHA!) project. AHA! is an open source general-purpose adaptive hyperme-
dia system, through which very different adaptive applications can be created. AHA!
offers low-level facilities for creating exactly the desired look-and-feel for each ap-
plication and for fine-tuning the adaptation, and it offers high-level facilities for creat-
ing the conceptual structure of an application, using concepts and concept relation-
ships. Since AHA! is essentially an adaptive client and server at the same time it can
be used as a component in the content delivery pipeline and thus integrated into other
server environments. AHA! was originally developed to support an on-line course
with some user guidance through conditional (extra) explanations and conditional
link hiding. But now AHA! has many extensions and tools that have turned it into a
versatile adaptive hypermedia platform and it has a complete set of authoring tools
(Concept Editor, Graph Author, Form Editor, Test Editor, etc.) to allow authors to
easily create or change applications or courses, concepts, concept relationships, com-
puterized tests, etc.

In this chapter, we are going to describe the AHA! system and the main authoring
tools that it provides to the author. First, we describe a state of the art in adaptive
educational hypermedia systems and authoring tools for developing. Then, we de-
scribe overall AHA! architecture and the tools that are included in the current distri-
bution version, available from the Eindhoven University of Technology, at
http://aha.win.tue.nl/. Next, we describe some news tools that we are developing at
Córdoba University, and finally, we present some conclusions.

2 Background

Adaptive Web-based educational systems (AWBES) provide an alternative to the
traditional “just-put-it-on-the-Web” approach in the development of Web-based edu-
cational courseware [12]. AWBES attempt to be more adaptive by building a model
of the goals, preferences and knowledge of each individual student and by using this
model throughout the interaction with the student in order to adapt to the needs of
that student. For example, a student will be given a presentation that is adapted espe-
cially to his or her knowledge of the subject and a suggestion is made of the most
relevant links to proceed further. AWBES inherit from traditional Intelligent Tutoring
Systems (ITSs) and Adaptive Hypermedia Systems (AHSs). ITSs typically partition
the information space in knowledge about the domain, knowledge about the user and
teaching strategies to support individualized learning. Adaptive Hypermedia Systems
usually enable content and navigation adaptation, by altering the link structure and
the node contents of the hypertext that contains the educational material. AWBES can
use different techniques and methods in order to add adaptive functionality to and
educational system [7]:

- Curriculum Sequencing (or instructional planning): Provide the learner with the
most suitable individually planned sequence of knowledge units and learning
tasks.

- Intelligent analysis of a student’s solutions: Identify in the student’s solution of
a problem what exactly is wrong or incomplete and which missing or incorrect
knowledge may be responsible for the error.

- Interactive problem solving support: Provide the student with intelligent help on
each step of the problem solving process from giving a hint to executing the
next step for the student.

- Example-based problem solving: Help students by suggesting the most relevant
cases (examples previously explained or problems already solved by the stu-
dents).

- Adaptive presentation technology: Adapt the content of a hypermedia page to
the user’s goals, knowledge and other information stored in the user model.

- Adaptive collaboration support: Use the system’s knowledge about different us-
ers (stored in user models) to form matching collaboration groups.

- Adaptive navigation support technology is to support the student navigation and
orientation in hyperspace by changing the appearance of visible links. In par-
ticular, the system can adaptively sort, annotate, or partly hide the links in the
current page to make easier the choice of the next link to proceed.

There are a lot of adaptive educational hypermedia systems developed since 1996
[10] such as ELM-ART [6], InterBook [8], PT [29], 2L670 [18], Medtech [24], AST
[45], ADI [44], HysM [30], MetaLinks [36], RATH [27], TANGOW [14], Arthur
[25], CAMELEON [31], KBS-Hyperbook [26], SKILL [37], ACE [46], ART-Web
[51], AHA! [19], etc. After some initial experimental versions AHA! was released as
version 1.0 in 2000. Compared to other adaptive systems like Interbook, KBS-
Hyperbook and many others AHA! excelled in the area of simplicity. AHA! has since
evolved into a much more powerful system (version 2.0 and current 3.0), but new
versions maintain that basic simplicity. The adaptive hypermedia methods and tech-
niques present in AHA! [20] can be found in Brusilovsky’s taxonomy [7]:

- A user model based on concepts: Each time you visit a concept in an AHA! ap-
plication the name of the concept is passed to the adaptation engine which up-
dates the user model. A user model consists of concepts that have attributes. A
typical example of an AHA! action is that visiting a concept may increase a
knowledge attribute for that concept. This knowledge update may propagate to
the knowledge attribute of other concepts, perhaps corresponding to a section or
chapter of a textbook. In AHA! a concept can have arbitrarily many attributes of
types Boolean, integer or string. A concept may also have an associated re-
source which is a page to be presented to the user. (A concept may have several
associated resources and rules to select the most appropriate page to be pre-
sented.)

- Adaptive link hiding or link annotation: The suitability of link destinations
(pages) is determined by an author-defined requirement. This is a (Boolean) ex-
pression using arbitrary user model values. The requirements can express the
common prerequisite relationships between concepts but can be used for any
other condition that can be expressed through such a Boolean expression. When
a page is generated, links marked as conditional (using the link class “condi-
tional”) are displayed differently depending on the suitability of the link desti-
nation. If the expression is true the link is shown in blue (unvisited) or purple
(visited), and when the expression is false the link is shown in black, and not
underlined. This results in hiding the unsuitable or undesired links. The color
scheme can also be altered by the end-user to make all links visible, in different
colors.

- Conditional inclusion of fragments: Like for the links to concepts or pages the
author can also associate a requirement with fragments in a page. This is done
through an <if> tag, with one or two fragments, enclosed by a <block> tag. If
the expression is true the first fragment is shown to the user, otherwise the sec-
ond (optional) fragment is shown. This can be used to include prerequisite ex-
planations, or any other piece of content. In the current AHA! version 3.0 frag-
ments can be external objects, represented through the <object> tag. Such ob-
jects can themselves also be associated with concepts and accessing them trig-
gers user model updates just like for page accesses.

Presently, adaptive educational hypermedia is at the point of break-through from
academic circles to industry, attracting more and more business partners. Therefore,
the time is ripe to move from the current proof-of-concept type of research to the
wide-range, scalable implementations [15]. For this purpose, it is necessary to give

much more attention to the authoring process itself and to produce good authoring
tools [16]. Using these tools educators can safely become adaptive educational hy-
permedia authors, without needing programming skills or excessive training. Gener-
ally, the basic steps of creating AWBES are not entirely different from steps in creat-
ing a regular hypertext system. In fact, authoring for adaptive educational hypermedia
systems means initially creating the resources, labelling them, combining them into
what is known as (in adaptive hypermedia) a domain model. Then, another (not nec-
essarily successive) step is creating a user model, responsible for characterizing the
user, either in a static way (which generates adaptable material) or in a dynamic way
(for adaptive material). More advanced adaptive hypermedia systems dedicated to
education also add a pedagogic model, and sometimes a presentation model. As in the
case of generic hypertext and Web authoring, there are two major approaches used by
authoring tools [11]:

- Markup approach. In this approach the content of the pages and links between
pages and concepts are authored in a regular word processor with the help of
special markup language. A good example is to save a Word file in RTF format
and then to convert it to a real markup representation in the form of extended
HTML. Nowadays, XML offers a standard way of markup-based authoring sup-
ported by various XML editors and parsers. The markup approach is very at-
tractive because the combination of low cost and expressive power.

- GUI (Graphic user interface) approach. In this approach authors are created ap-
plications using a special authoring user interface. In general, it could be a com-
mand-based, form-based or a direct manipulation interface, but all existing AHS
authoring tools use form-based GUI. This kind of interface provides very good
support for the non-professional. Unfortunately, there are no form-based inter-
faces that can be used to develop rich information structures. So, a combination
of a markup-based interface and a form-based interface can provide a good
compromise between development cost and level of author’s support.

There are several examples of real authoring systems to develop adaptive educa-
tional hypermedia [11] such as InterBook [8], Web DCG [48], DCG+GTE [49], ACE
[46], ALE [47], NetCoach/ART-WEB [52], ECSAIWeb [42], MetaLinks [36],
SIGUE [13], CAMELEON [31], PaKMaS [Süß2000], RATH [27], SKILL [37],
ITMS [34], WHURLE [5], AHA! [19], etc. Most of these systems use only one of the
two previous authoring approaches. However, AHA! is a good example about a com-
bined interface. While the full power of AHA! (especially in version 3.0) is only
available through the XML-based markup language, the system now also provide
several form-based authoring tools for the development of domain model (Concept
Editor, Graph Editor, Form Editor and Test Editor) and management (Mining Tool
and Course Editor). In AHA! each page is created as an XML file that includes spe-
cially tagged index part and a page content. The page content is created in HTML
format with XML extensions that are used to author conditional fragments (fragment
indexing). In addition to that, a special XML file defines domain concepts and con-
nections between them. The domain model XML file lets the author to specify these
relationships between concepts. The runtime engine of AHA! based on Java servlets
reads the authored XML files, converts it into an internal object representation and

maintains the adaptive interaction with the user. In fact, it is the use of the flexible
XML approach that allows AHA! to evolve so rapidly.

Currently, there is a new wave in Web-based courseware authoring centered on
learning objects, courseware reuse, metadata and standards [11] that comes from
Learning Management Systems (LMSs) in order to resolve problems that one can’t
move a web-based course from one systems to another, can’t reuse web-based content
pieces (objects) across different systems, and can’t create searchable learning content
libraries or media repositories across different environments. One solution is to create
eLearning specifications and standards and make them available as free downloads.
eLearning standards and specifications refer to a system of common rules for content,
authoring software and LMSs. These standards specify how courses can be created
and delivered over multiple platforms so that they all operate seamlessly together.
Accredited standards ensure that the investment in time and intellectual capital could
move from one system to the next. There are several adopted or coming eLearning
standards:

- AICC [1] stands for Aviation Industry CBT Committee. It is considered the old-
est eLearning standard in the world, originating from the needs of the aviation
industry to create a common CBT system. Subsequently, the standard was
shifted to encompass web-based training.

- IMS [28] is another popular eLearning standard, focusing mostly on metadata,
such as metadata for the tagging of learning objects. It also has specifications to
define how the LMS can communicate with back-end applications. The most
widely acknowledged IMS specifications are as follows: IMS Meta-data, IMS
Content Packaging and IMS QTI (Question and Test Interchange).

- IEEE Learning Technology Standards Committee (LTSC) provides the Learn-
ing Object Metadata (LOM) specification [32], which defines element groups
and elements that describe earning resources. The IMS and ADL both use the
LOM elements and structures in their specifications.

- The ADL Sharable Content Object Reference Model (SCORM) specification
[ADL2006] combines elements of IEEE, AICC and IMS specifications into a
consolidated document that can be “easily” implemented. The ADL adds value
to existing standards by providing examples, best practices and clarifications
that help suppliers and content developers implement eLearning specifications
in a consistent and reusable way.

 There are already a few attempts to combine the adaptive hypermedia and meta-
data-based courseware re-use approaches in one framework such as WHURLE [5],
ALE [47] and PaKMaS [Süß2000]. AHA! uses XML-based data structures similar to
many of the elearning standards and elearning systems and so, it can be easly trans-
lated to other systems and specifications. Some good examples are the Interbook to
AHA! compiler [21], the integration of AHA! and Auld Linky [33], the integration of
MOT with AHA! [17], a tool for importing/exporting AHA! courses to/from SCORM
courses [40] and a tool [41] for importing/exporting AHA! assessments to/from other
tests systems sush as IMS QTI [4], QuestionMark [38], SIETTE [3], Moodle [35],
etc.

Finally, in Table 1, we show a resource list (software, conferences and journals)
about Web-based adaptive educational systems to enable the reader to consult more
information on these type of systems.

Table 1. Resource list about authoring Web-based adaptive educational systems.

Type Name Website
Software ELM-ART http://apsymac33.uni-trier.de:8080/Lisp-

Course
 InterBook http://www.sis.pitt.edu/~peterb/InterBook

.html
 AHA! http://aha.win.tue.nl/
 KBS Hyperbook http://www.kbs.uni-

hannover.de/hyperbook/
 SQL-Tutor http://www.cosc.canterbury.ac.nz/tanja.m

itrovic/sql-tut.html
 NetCoach http://www.orbis.de/netcoach
 MetaLinks http://ddc.hampshire.edu/metalinks/
 WHURLE http://whurle.sourceforge.net/
 RATH http://wundt.kfunigraz.ac.at/rath/
Conferences Adaptive Hypermedia

and Adaptive Web-
Based Systems (AH)

http://www.ah2006.org/

 World Conference on
Educational Multimedia,
Hypermedia and Tele-
communications (ED-
Media)

http://www.aace.org/conf/edmedia/

 International Conference
on Artificial Intelligence
in Eduation (AI-ED)

http://hcs.science.uva.nl/AIED2005/

 ACM Conference on
Hypertext and Hyper-
media (Hypertext)

http://hypertext.expositus.com/

 World Conference on E-
learning (E-Learn)

http://www.aace.org/conf/eLearn/default.
htm

Journals New Review of Hyper-
media and Multimedia

http://www.gbhap.com/journals/titles/136
14568.asp

 User Modeling and
User-Adapted Interac-
tion (UMUAI)

http://www.umuai.org/

 International Journal of
Artificial Intelligence in
Education (IJAIED)

http://aied.inf.ed.ac.uk/

 Journal of Educational
Multimedia and Hyper-
media (JEMH)

http://www.aace.org/pubs/jemh/

3 AHA! Architecture

AHA! [19] [20] [22] [23] is a Java-servlet-based software environment that works
with the Tomcat web server, on Linux (or UNIX) as well as on Microsoft Windows.
It is available from http://aha.win.tue.nl/. Figure 1 shows the overall architecture of
AHA! system. The core is formed by the AHA! engine which is implemented using
Java Servlets running on (and communicating with) the web-server. The information
on the server consists of three parts we describe in detail below: a combined domain
and adaptation model (DM/AM), corresponding to these models in AHAM, a user
model (UM) which keeps track of the user’s knowledge about the domain concepts,
and the local pages which contain the content of the application or course. It is possi-
ble to include external pages (retrieved from other web servers) and they are (poten-
tially) adapted in the same way as local pages. AHA! also contains authoring and
management tools, explained in a later section.

Fig. 1. Overall AHA! architecture.

AHA! is an Open Source Web server extension to add adaptation to applications

such as on-line courses. Users request pages by clicking on links in a browser, and
AHA! delivers the pages that correspond to these links. However, in order to generate
these pages AHA! uses three types of information:

- The domain model (DM) contains a conceptual representation of the application’s
content. It consists of concepts and concept relationships. In AHA! every page that
can be presented to the end-user must have a corresponding concept. It is also pos-
sible to have conditionally included fragments in pages. For each place where a
decision needs to be made what to include a concept must be defined. (Such a con-
cept can be shared between different pages on which the same information is con-
ditionally included.) Pages are normally grouped into sections or chapters or other
high-level structures. AHA! makes use of a concept hierarchy through which one
can easily have knowledge propagated from pages to sections and chapters, and
through which AHA! can automatically generate and present a hierarchical table of
contents. Concepts can be connected to each other through concept relationships.
In AHA! there can be arbitrarily many types of concept relationships. A number of
types are predefined to get you going quickly as an author. A typical example of a
(predefined) relationship type is prerequisite. When concept A is a prerequisite for
concept B the end-user should be advised (or forced) to study or read about con-
cept A before continuing with concept B. This relationship is translated into adap-
tation rules that will adapt the colors of anchors for links to concept B. The transla-
tion from concept relationships to the actual adaptation using colors and/or icons is
very flexible but defined through templates the average author may not wish to
change. The flexible scheme is explained in [23]. By default the link anchors will
have the normal Web colors (blue or purple) when the link leads to a concept (or
page) for which all the prerequisites are met, and will have the color black when
some prerequisites are not met. Creating a domain model, using existing templates,
is easiest using the Graph Author tool.

- The user model (UM) in AHA! consists of a set of concepts with attributes (and
attribute values). This model contains an overlay model, which means that for
every concept in DM there is a concept in UM. UM can contain additional con-
cepts (that have no meaning in DM) and it always contains a special pseudo-
concept named personal. This concept has attributes to describe the user and in-
cludes such items as login and password. When a user accesses an AHA! applica-
tion the login form may contain arbitrary (usually hidden) fields that contain val-
ues for attributes of the personal concept. It is thus possible to initialize prefer-
ences through the login form. To get you going quickly as an author the AHA! au-
thoring tools provide a number of UM concept templates, resulting in concepts
with predefined attributes. Typical attributes are knowledge and interest, to indi-
cate the user’s knowledge of or interest in a certain concept. AHA! will automati-
cally propagate an increase in knowledge of a concept to higher-level concepts
(higher in the concept hierarchy of DM). It will also record a lower knowledge in-
crease when studying concepts for which the prerequisites are not yet known.

- The adaptation model (AM) is what drives the adaptation engine. It defines how
user actions are translated into user model updates and into the generation of an
adapted presentation of a requested page. This model consists of adaptation rules
that are actually event-condition-action rules. Most authors will never have to learn
about AM because the rules are generated automatically by the Graph Author.
Whe you have very specific adaptation needs (not possible with the existing tem-
plates) you should either learn to create your own templates or study the Concept

Editur that lets you create arbitrary adaptation rules. We now explain what hap-
pens exactly when the end-user clicks on a link in a page served by AHA!:

1. In AHA! there are two types of links: links to a page and links to a concept.
Since in DM pages are linked to concepts AHA! can find out which concept cor-
responds to a page and which page corresponds to a concept.

2. The adaptation engine starts by executing the rules associated with the attribute
access of the requested concept (or the concept that corresponds to the requested
page). Access is a system-defined attribute that is used specifically for the pur-
pose of starting the rule execution.

3. Each rule may update the value of some attribute(s) of some concept(s). Each
such update triggers the rules associated with these attributes of these concepts.

4. When the rules have been executed AHA! determines which page was requested.
(It is possible to associate several pages with a concept and have rules decided
which page to present, just like with conditional fragments inside a page. Details
are described in [23].)

5. A frame is generated with components that define the look and feel of the appli-
cation. The presentation may include a hierarchical menu with chapters and sec-
tions for instance. One frame (typically the largest one) is used to present the re-
quested frame.

6. The requested page is parsed and adapted. This adaptation includes changing the
link colors and conditionally including fragments (also called objects). The inser-
tion of objects actually has some complex side effects that we do not discuss fur-
ther in this chapter.

In AHA! the presentation of a course can be influenced in many more ways that
are beyond the scope of this chapter. AHA! uses a layout model to define how con-
cepts (of different types) are presented. A layout is basically an HTML frames struc-
ture, and apart from a frame that shows a page there can be frames that show part of a
table of contents, concepts of which the knowledge is increased by reading the cur-
rent page, prerequisite concepts (and their knowledge level), etc. Through the power-
ful layout model AHA! applications can be made to look very similar to applications
in other adaptive educational hypermedia platforms. Figure 2 shows the AHA! tuto-
rial as an AHA! application, using just one of many ways in which the presentation is
possible.

Fig. 2. AHA! Tutorial.

4 Authoring and Management AHA! Tools

Authors in AHA! are special users, created by the manager (who installs AHA!). As
an author you can access the different authoring tools and your account information
through the main starting page of the AHA! distribution. From this page (see Figure
3) the author can go to the following sub-parts:
- The Configuration is an interface for manipulating the different AHA! data struc-

tures. It lets you choose between the use of XML files or a mySQL database for
the concept structures and the user models, and lets you convert authoring formats
to internal formats. It lets you define authors and assign applications to authors.

- The Application Management Tool is the “parent” authoring tool. It lets you trans-
fer files from your local machine to the server and back, and lets you start most
other authoring tools by simply clicking on the names of the authoring files.

- The Author Workplace to change your settings as an author, and access all the
authoring tools (Concept Editor, Graph Author, Form Editor, Test Editor, etc.).
Authorization is required to change your author settings. You can also access the
authoring tools directly from the authoring page. (The tools ask for authorization
when you start them.)

- The starting page may provide links that lead to hyperdocuments or applications
that are served from this instance of the AHA! system. The standard AHA! 3.0
start page offers access to one application: the AHA! 3.0 tutorial. The tutorial is

adaptive. By studying the source files for the tutorial you can also learn more
about how to create adaptive documents with/for AHA!.

Fig. 3. Main starting page of the AHA! distribution.

4.1 Application Management Tool

The Application Management Tool [22] gives easy access to the authoring tools as
well, and provides a file transfer tool that lets you copy files back and forth between
your (authoring) workstation and the AHA! server. In order to manage an application
as an author the application management tool, or AMT for short, offers a user-
friendly interface to copy files between your local PC and the AHA! server. AMT
works as a signed Java applet, in order to be able to access your local file system. The
figure 4 shows the AMT interface. The left half of the window gives an explorer-like
view of your local file system. The right half can either show the application files
which are all the files that you create as an author and that the server uses when the
application is running. The alternative view shows the author files which are the files
that are created using the special AHA! authoring tools for the domain model. When
you double-click on one of these files the appropriate authoring tool is started auto-
matically. The files created by the authoring tools (Graph Author and Concept Editor)
are not stored on your PC, only on the server.

Fig. 4. Application Management Tool main window.

The AMT show an interface that is similar to that of a popular secure shell (ssh)
interface. On the left you see the local file system, and on the right you either see the
server’s file system (in the Application Files tab) or the server-side authoring files for
the Graph Author and Concept Editor. When you double-click on the .gaf files the
Graph Author is started automatically and when you double-click on the .aha files the
Concept Editor is started. It is thus possible to perform all the application creation and
maintenance using AMT. The one part that is not supported by special tools in AHA!
is the creation of the application’s files like pages and images. Although AHA! con-
tains some limited backward compatibility support for plain HTML, it works best
with XHTML, with or without some AHA! extensions.

4.2 Graph Author Tool

The Graph Author [22] is the main authoring tool for the concept structure. It lets you
create a concept hierarchy and concept relationships of different types. The Graph
Author is also a graphical, Java applet based tool, but it uses high level concept rela-
tionships. Again, when concepts are created a set of attributes and adaptation rules is
generated. But this tool also has templates for different types of concept relationships
(also defined by the author). Creating knowledge propagation, prerequisite relation-
ships or any other relationship is just a matter of drawing a graph structure using this
graphical tool. The translation from high-level constructs to the low-level adaptation
rules is done automatically, based on the templates. Figure 5 shows a screenshot of
the Graph Author.

Fig. 5. Graph Author tool main window.

In the Graph Author you create concepts and concept relationships. The Graph Au-
thor window is split into two parts (see Figure 5), showing the concepts (as a hierar-
chy) on the left and showing the concept relationships (as a graph) on the right. The
graph represents the structure of prerequisite relationships in a tutorial application.
The concepts are structured as a hierarchy which in fact also is a structure of concept
relationships (and always present in an AHA! application). Every type of relationship
has a different meaning related to the adaptation an application provides (we explain
this later) and is represented using different color and style of arrows.

The concept relationship graph is created by dragging concepts from the hierarchy
shown on the left to the drawing pane, and by then drawing arrows between the con-
cepts. You first select the appropriate concept relationship type from the drop-down
list (top right in Figure 5) and then click on the source concept and drag to the desti-
nation concept. Some concept relationships may have an optional parameter. By
clicking on the arrow a textfield appears in which the parameter value can be entered.
For a prerequisite for instance the amount of knowledge that must be exceeded in
order for AHA! to consider the prerequisite to be fulfilled is a parameter. (Its default
value is 50 in this case.). Also, the rules are executed (conditionally) when a page
(associated with the concept) is accessed. In an application like the tutorial one we
have three types of concept relationships that play a role:
- For every page there is a unary relationship (a relationship from the page to itself),

called knowledge update. When a page is read the action that is performed depends

on the suitability of the page. If the suitability attribute is true then the knowledge
of the page is set to 100. If it is false then the knowledge of the page is increased to
35. (By this we mean the value is set to 35 if it is lower but left at its previous
value if that was already over 35.).

- The concept hierarchy shown in the Graph Author is used for knowledge propaga-
tion. When the knowledge of a concept changes that change is propagated to the
concepts that are higher in the concept hierarchy. How much knowledge is propa-
gated depends on the number of siblings the concept has. The idea is that when all
siblings reach a knowledge level of 100 the parent should have 100 as well. (But
due to integer arithmetic and truncation that value may end up being slightly
lower.).

- The prerequisite relationships determine the suitability of a concept. If A is a pre-
requisite for B, expressed by drawing a prerequisite arc from A to B in the graph,
the suitability of B depends on the knowledge of A. The standard rule requires the
knowledge of A to be higher than 50 in order for B to be considered suitable.

4.3 Concept Editor

The Concept Editor [22] is an authoring tool for defining concepts and adaptation
rules. This tool is a graphical, Java applet based tool to define concepts and adapta-
tion rules. It uses an (author-defined) template to associate a predefined set of attrib-
utes and adaptation rules with each newly created concept. It is a low level tool in the
sense that all adaptation rules between concepts must be defined by the author. Many
applications have a number of constructs that appear frequently, e.g. the knowledge
propagation from page to section to chapter, or the existence of prerequisite relation-
ships. This leads to a lot of repetitive work for the author. Note that whereas the
Graph Author can generate files in the Concept Editor’s authoring format it cannot
import them. Some user interface differences between the Graph Author and the Con-
cept Editor exist for historical reasons only. Figure 6 shows the Concept Editor with
the same tutorial example used earlier.

Fig. 6. Concept Editor main window.

The concept hierarchy is represented inside the concepts, but the Concept Editor
(unfortunately) does not show that hierarchy in its left frame. Also, the Concept Edi-
tor is sometimes referred to as Generatelist Editor for historical reasons. The author-
ing format with concepts and adaptation rules is called the generatelist format. The
editor lists all the concepts (of a single application) on the left, and shows details of a
selected concept on the right.

4.4 Form Editor

The Form Editor [22] enables you to create custom forms to let end-users change
values of attributes of concepts in their user model. Attributes of concepts defined as
changeable can be included in a custom-made form. The Form Editor lets you create
an (X)HTML form in which form elements for the attributes of concepts are inserted
automatically, and in which you create the remainder of the presentation by means of
plain HTML code. A form is bound to an application, so when creating a new form
you have to load the conceptual structure of that application. (File, Load AHA! appli-

cation). The form editor creates a skeleton representing an empty form. You can add
HTML code for the presentation and use the buttons Input, Select, Option and Button
to add form elements. A form can be viewed as HTML source and can be previewed.
The Form Editor uses a standard Java HTML editor class to do this (see Figure 7). At
the time of writing this tutorial this standard class is not yet fully XHTML compliant,
so you will have to use a somewhat simplified HTML, which is normally enough for
a simple form. Forms created with the Form Editor are saved in your authoring direc-
tory. You have to copy them to whichever location on the server you want to use to
refer to them from within the content pages that have a link to them. (We are working
on a tool that lets you create forms inside the application’s document tree right away.)

Fig. 7. Form Editor with a example form.

4.5 Test Editor

AHA! 3.0 comes with a (new) authoring tool (Test Editor) for developing multiple-
choice tests that can be used in web-based systems and wireless devices [39] [41].
Computerized tests or quizzes are among the most widely used and well-developed
tools in web-based education [9]. There are different types of computerized tests,
depending on the type of items or questions (yes/no questions, multiple-choice/single-
answer questions, fill-in questions, etc.) and there are two main types of control algo-
rithms: classic or linear tests and adaptive tests [50]. Test Editor is an authoring tool
for building adaptive (and randomized) and classic (non-randomized) multiple-choice
tests. The specific life cycle of tests we have used is:
- As the first step for developing a test with Test Editor, the examiner has to create

one or several (XML) items files. An item consists of a single question about a sin-
gle concept (from an AHA! application or course), the answers (right or wrong)
and explanations for the wrong answers. Several items/questions about the same
concept can be grouped together into one items file. Figure 8 shows how to add
questions to the items file, one by one. The examiner must also specify some re-
quired parameters (the enunciate flag, and for each answer a flag to indicate
whether the answer is correct) and can add some optional parameters (an illustra-
tive image, explanations and Item Response Theory (IRT) parameters [50]: item
difficulty, discrimination and guessing). Using the Test Editor items can be added,
modified or deleted. They can be imported/exported to/from other tests systems
(IMS QTI [4], QuestionMark [38], SIETTE [3], Moodle [35] etc.). Questions can
thus be re-used from other test environments without needing to enter them again.

Fig. 8. Test Editor: Windows to introduce the obligatory parameters of an item.

- The second step is to build tests out of items. The examiner decides on the test type
(classic test or adaptive test) he wants and whether to use just one or several items
files. If the test evaluates only one concept, we consider it to be an activity. If the
test evaluates several concepts, it will be an exam, about a chapter or perhaps a
whole course. Next, the examiner can use different methods to select what specific
items from these items files will be used in the test (the selection can be done
manually, randomly or randomly with some restrictions). Then he sets presentation
parameters (see Figure 9) about how questions are shown to examinees: the order
in which questions and answers are shown, whether to show or hide explanations
of the answers (through the verbose flag), the maximum time to respond, whether
to show the correct answer or just a score, etc. In addition to these there are also
parameters about evaluation: to penalize incorrect answers, to penalize unanswered
questions and what percentage of knowledge the final score represents in the asso-
ciated concept/concepts. If the test is adaptive, the examiner also has to set the
adaptive algorithm parameters (questions selection procedure and termination cri-
terion). Each test is stored in an XML file and that is exactly the same for both ver-
sions (PC and mobile). But for the mobile devices it also is necessary to create a
.jar and .jad file that includes both the multiple-choice test code (a Java Midlet test
engine) as well as the questions and parameters (XML file).

Fig. 9. Test Editor: Windows to select the questions presentation parameters.

- The generated test can be downloaded (the .jar file) into a mobile phone and/or
can be used directly (through a browser) in an AHA! course. When used with
AHA! a test is presented in an Java Applet, with a look and feel that is similar to

the Java Midlet version (see Figure 10). The results of tests are logged on the
server. After a large number of examinees performed some tests, examiners can
examine statistical information in the Test Editor (success rate per question, mean
times to answer the questions, questions usage percentage, etc.) and use that in-
formation for maintenance and improvements of the tests. The examiner may de-
cide to modify or delete bad items, add new items, but he can also modify the test
configuration. Test Editor also can do items calibration, in order to transform a
classic test into an adaptive one, or to optimize the IRT parameter of an adaptive
test.

Fig. 10. Interface of a question in an AHA! course and in a mobile phone.

4.6 Mining Tool

Currently, we are developing a new mining tool in order to help authors in discover-
ing interesting information from students’ usage information that can be used to im-
prove the courses. Currently, we have developed a “links recommendation” facility
based on sequential pattern mining. The recommendation of links (to content pages,
activities, etc) is very important in e-learning systems in order to personalize (or
adapt) the learning for each student and to guide them to the best learning path. One
way to automate this process is the application of data mining techniques into the
students’ usage information. In most e-learning systems, all the pages accessed by
students are saved in log files (either one log file for each student or just one big log
file for everyone) that they contain all the information about the interaction of the
students with the system. Therefore, after pre-processing this information, it is possi-
ble to discover sequential patterns from these log files by using some data mining
algorithms. Sequential pattern mining can be defined as the process of discovering all
sub-sequences that appear frequently on a given sequence database and have mini-

mum support threshold. Our objective is to use the discovered sequential patterns to
create interesting recommendation links to show to the students while they use the e-
learning system. To do that, all the sequential patterns are split in sequences of only
two components. These obtained sequences can be considered as a rule with only one
antecedent and one consequent, so that the antecedent represents the page in which
the recommendation is shown and the consequent is the link recommended to the
student.

We have developed a mining tool (see Figure 11) in order to help to the teacher to
carry out all this process. This application is a Java Applet, just like other AHA!
authoring tools. In order to use it, the author has to identify himself and to choose
from which courses and students he wants to discover sequential patterns. Then, the
application creates a file with the pre-processed data in Weka format [53]. Next, the
author has to select a data mining algorithm for extracting sequential patterns from
the available ones [2]: AprioriAll, GSP and PrefixSpan. When the algorithm finishes
its execution, the discovered sequences are shown and they can be automatically
translated into recommendations links to be inserted into the corresponding course
web page.

Fig. 11. Recommendation links window and application main window.

4.7 Course Editor

At the University of Córdoba we are also working on a new high level tool, named
Course Editor (see Figure 12). Using this tool, (of which the completion date is cur-
rently still undetermined, authors can easily create and maintain AHA! courses. This
tool can create a new course or import and export AHA! courses to/from SCORM
courses [40], can edit the XHTML course pages, can visually configure the layout of

the course, can add collaborative services like a chat, an announcement board, an
upload tool, etc. to a course.

Fig. 12. Course editor main window.

The mains functions that the Course Editor tool provides to the author are:
- Creating new courses. Course Editor can create a new complete AHA! course. It

creates not only the configuration files (.aha and .gaf) but also all the directories
and pages (.xml, .html, etc.) with the content of the course. It can also open a pre-
viously created AHA! course in order to edit and add new characteristics.

- SCORM Export and Import. Course Editor provides a way to create a new
AHA! course from a SCORM 2004 package course [43]. So, it’s very easy to cre-
ate a course or a base-plane for a new course. It also provides a way to export
AHA! courses to SCORM courses in order to reuse courses previously created in
other e-learning environments. (Conversion to SCORM may be lossy, depending
on which adaptation possibilities AHA! offers are used.)

- Layout View configuration. With Course Editor, an author is able to change the
layout of the course, change sizes of frames in a WYSIWYG way or add/remove
views (corresponding to HTML frames) to the main window.

- Collaborative Services. Course Editor allows author to include a new layout in
the main window (or in a secondary one), giving access to collaboration tools.
Adding collaborative services such as Chat, Announcement Board, Upload and
Download, enables students to interact with the teacher and with others students
using the same platform, or even the same course.

- Recommended links. With these recommended links, authors can include direct
links to other pages. These recommendations are a type of relationship between
concepts. The teacher can use his personal experience, history of students’ results,
a data mining study, etc. to establish them. These direct relationships are shown in
the student’s browser window, as direct links between concepts related to each
other, external links or links to a test where AHA! may evaluate the student’s pro-
gress and understanding of the concept.

- Navigation Panel. With this panel, authors are able to see the all the pages and
concepts that a course has, as well as the relationships between these concepts.

- Complete XHTML Editor. Even if authors have no knowledge of XHTML,
sometimes it is needed to edit these files. For example, to create or modify a course
web page to include special AHA! tags, for a conditionally included fragment or
for AHA!-specific anchors. Editing will be performed by using a WYSIWYG tool,
which will include AHA! options as additional option to standard XHTML editing.

- Browser View. Course Editor provides a way to view a page of the course as it
may appear when students will see it. (We say “may” because the actual presenta-
tion depends on the student’s user model.) This view will be shown in an embed-
ded browser in the Course Editor, Internet Explorer or whatever browser is the de-
fault on the author’s machine.

In the Figure 13 you can see the interface of a course edited with Course Editor in
which we have added some Collaborative Services and Recommended Links; in this
case, the student is recommended to go to the “graph author” concept if he is cur-
rently reading the “pages” concept.

Fig. 13. AHA! Tutorial with Collaborative Services and Recommended Links.

5 Conclusion

In this chapter we have described some authoring and management tools of the AHA!
system. AHA! is one of the first and most extended adaptive systems in the world.
The AHA! project, which stands for Adaptive Hypermedia for All builds on the Open
Source AHA! system (the Adaptive Hypermedia Architecture), being developed a the
Eindhoven University of Technology, in the Database and Hypermedia group. We
have described the general architecture and the specific functionality of the AHA!
system. We have described some of the mains tools provided by the currently distrib-
uted AHA! version such as: Concept Editor, Graph Author, Application Manage-
ment, Form Editor and Test Editor. We described some new tools that we are devel-
oping such as: Course Editor and Mining Tools. Using all these tools the develop-
ment and maintenance of AHA! applications is made easier for non-technical authors.
Some of these tool are oriented to adaptive hypermedia applications in general (Con-
cept Editor, Graph Editor, Application Management) and others are more oriented to
educational applications (Test Editor, Course Editor, Mining Editor).

Currently we are developing the Course Editor and we want to improve the Mining
tool in order to add to it more data mining methods as classification, clustering, asso-
ciation, prediction, etc. in order to enable the discovery of much more interesting
information to teacher. We are also working on a tool for visualizing the student’s
usage data. Using this tool the teacher can see graphically all the usage information of
a whole class or of specific students (visited pages, access or reading times, obtained
scores, etc.).

Finally, AHA! is continuously being further developed and improved. We wel-
come contributions from other groups and will do our best to include the contribu-
tions in future releases.

References

1. AICC: http://www.aicc.org (2006)
2. Antunes, C., Oliveira, A.L.: Generalization of Pattern-Growth Methods for Sequential

Pattern Mining with Gap Constraints. Machine Learning and Data Mining in Pattern Rec-
ognition (2003) 239-251

3. Arroyo, I., Conejo, R., Guzman, E., Wolf, B.P.: An Adaptive Web-based Component for
Cognitive Ability Estimation. Proc. of Artificial Intelligence in Education. Amsterdam:IOS
(2001) 456-466

4. Bacon, D.: IMS Question and Test Interoperability. MSOR Connections, 3:3 (2003) 44-45
5. Brailsford, T. J., Stewart, C. D., Zakaria, M. R., Moore, A.: Autonavigation, links, and

narrative in an adaptive Web-based integrated learning environment. Proceedings of World

Wide Web Conference (2002)
6. Brusilovsky, P., Schwarz, E., Weber, G.: ELM-ART: An intelligent tutoring system on

World Wide Web. Third International Conference on Intelligent Tutoring Systems (1995)
261-269.

7. Brusilovsky, P.: Methods and techniques of adaptive hypermedia. User Modeling and User-
Adapted Interaction, Vol. 6:2-3 (1996), 87-129

8. Brusilovsky, P., Eklund J., Schwarz E.: Web-based education for all: A tool for developing
adaptive courseware. Computer Networks and ISDN Systems, Vol. 30:1-7 (1998) 291-300.

9. Brusilovsky, P., Miller P.: Web-based Testing for Distance Education. Proc. of the World
Conference of WWW and Internet, (1998) 149-154

10.Brusilovsky, P.: Adaptive Educational Hypermedia. Proceeding of Tenth International PEG
Conference, (2001) 8-12

11.Brusilovsky, P.: Developing adaptive educational hypermedia systems: From design models
to authoring tools. In: T. Murray, S. Blessing and S. Ainsworth (eds.): Authoring Tools for
Advanced Technology Learning Environment. Kluwer Academic Publishers (2003) 377-
409

12.Brusilovsky, P., Peylo, C.: Adaptive and Intelligent Web-based Educational Systems, Inter-
national Journal of Artificial Intelligence in Education, Vol. 13 (2003) 156-169

13.Carmona, C., Bueno, D., EduardoGuzman, Conejo, R.: SIGUE: Making Web Courses
Adaptive. Proceedings of Second International Conference on Adaptive Hypermedia and
Adaptive Web-Based Systems (2002) 376-379

14.Carro, R. M., Pulido, E., Rodrígues, P.: TANGOW: Taskbased Adaptive learNer Guidance
on the WWW. Computer Science Report. Eindhoven University of Technology (1999) 49-
57

15.Cristea, A.I., De Bra, P.: ODL Education Environments based on Adaptability and Adaptiv-
ity, Proceedings of the AACE E-Learn'2002 conference (2002) 232-239.

16.Cristea, A.: Adaptive Patterns in Authoring of Educational Adaptive Hypermedia. Interna-
tional Peer-Reviewed On-line Journal Educational Technology and Society, Vol. 6:4 (2003)
1-5.

17.Cristea, A.I., Floes, D., Stach, N., De Bra, P.: MOT meets AHA!. Proceedings of the PEG
Conference (2003)

18.De Bra, P.: Teaching Hypertext and Hypermedia through the Web. Journal of Universal
Computer Science, Vol. 2:12 (1996) 797-804

19.De Bra, P., Calvi, L.: AHA! An open Adaptive Hypermedia Architecture. The New Review
of Hypermedia and Multimedia, Vol 4 (1998) 115-139

20.De Bra, P., Aerts, A., Berden, B. de Lange, B., Rousseau, B., Santic, T., Smits, D., Stash,
N.: AHA! The Adaptive Hypermedia Architecture. Proceedings of the ACM Hypertext
Conference (2003) 81-84

21.De Bra, P., Santic, T., Brusilovsky, P.: AHA! meets Interbook, and more... Proceedings of
the AACE ELearn (2003) 57-64

22.De Bra, P., Stash, N., Smits, D.: Creating Adaptive Web-Based Applications, Tutorial at the
10th International Conference on User Modeling (2005) 1-33.

23.De Bra, P., Smits, D., Stash, N., Creating and Delivering Adaptive Courses with AHA!,
Proceedings of the first European Conference on Technology Enhanced Learning (2006)
21-33

24.Eliot, C., Neiman, D., Lamar, M.: Medtec: A Web-based intelligent tutor for basic anatomy.
Proceedings of World Conference of the WWW, Internet and Intranet (1997) 161-165.

25.Gilbert, J. E., Han, C. Y.: Arthur: Adapting Instruction to Accommodate Learning Style.
Proceedings of World Conference of the WWW and Internet (1999) 433-438.

26.Henze, N., Naceur, K., Nejdl, W., & Wolpers, M. : Adaptive hyperbooks for constructivist
teaching. Künstliche Intelligenz, Vol. 4 (1999) 26-31.

27.Hockemeyer, C., Held, T., Albert, D.: RATH - A relational adaptive tutoring hypertext
WWWenvironment based on knowledge space theory. Proceedings of International confer-
ence on Computer Aided Learning and Instruction in Science and Engineering (1998) 417-
423.

28.IMS: http://www.imsglobal.org (2006)
29.Kay, J., Kummerfeld, B.: User models for customized hypertext. In C. Nicholas, J. Mayfield

(eds.): Intelligent hypertext: Advanced techniques for the World Wide Web (1997)
30.Kayama, M., Okamoto, T.: A mechanism for knowledge-navigation in hyperspace with

neural networks to support exploring activities. Proceedings of Workshop Current Trends
and Applications of Artificial Intelligence in Education at the 4th World Congress on Expert
Systems (1998) 41-48.

31.Laroussi, M., Benahmed, M..: Providing an adaptive learning through the Web case of
CAMELEON. International conference on Computer Aided and Instruction in Science and
Engineering (1998) 411-416

32.LOM: http:// www.ltsc.ieee.org (2006)
33.Millard, D., Davis, H., Weal, M., Aben, K., De Bra, P.: AHA! meets Auld Linky: Integrat-

ing Designed and Free-form Hypertext Systems. Proceedings of the ACM Hypertext Con-
ference (2003) 161-169

34.Mitsuhara, H., Kurose, Y., Ochi, Y., Yano, Y.: ITMS: Individualized Teaching Material
System-adaptive integration of web pages distributed in some servers. Proceedings of
World Conference on Educational Multimedia, Hypermedia and Telecommunications,
(2001) 1333-1338

35.Moodle: http://moodle.com (2006)
36.Murray, T.: MetaLinks: Authoring and affordances for conceptual narrative flow in adaptive

hyperbooks. International Journal of Artificial Intelligence in Education, Vol. 13:2-4 (2003)
197-231

37.Neumann, G., Zirvas, J.: SKILL - A scallable internet-based teaching and learning system.
Proceedings of World Conference of the WWW, Internet, and Intranet (1998) 688-693

38.QuestionMark: http://www.questionmark.com (2006)
39.Romero, C., De Bra, P., Palomo, S., Ventura, S.,: An Authoring tool for web-based adaptive

and classic tests.World Conf. on E-learning in Corporate, Government, Healthcares &
Higher Education, (2004) 174-177

40.Romero, C., Rider, J., Ventura, S., Hervás, C.: AHA! meets SCORM. IADIS ELearn. Vir-
tual Multiconference on Computer Science and Information Systems (2005).

41.Romero, C., Ventura, S., Hervás, C. de Bra, P.: An Authoring Tool for Building Both Mo-
bile Adaptable Tests and Web-Based Adaptive or Classic Tests. Int. Conference Adaptive
Hipermedia (2006) 203-212

42.Sanrach, C., Grandbastien, M.: ECSAIWeb: A Web-based authoring system to create adap-
tive learning systems. Adaptive Hypermedia and Adaptive Web-based Systems (2000) 214-
226

43.SCORM: http://www.adlnet.gov/scorm (2006)
44.Schöch, V., Specht, M., Weber, G.: "ADI" - an empirical evaluation of a tutorial agent.

Proceedings of World Conference on Educational Multimedia and Hypermedia and World

Conference on Educational Telecommunications (1998) 1242-1247
45.Specht, M., Weber, G., Heitmeyer, S., Schöch, V.: AST: Adaptive WWW-Courseware for

Statistics. Proceedings of Workshop Adaptive Systems and User Modeling on the World
Wide Web at 6th International Conference on User Modeling (1997) 91-95.

46.Specht, M., Oppermann, R.: ACE - Adaptive Courseware Environment. The New Review
of Hypermedia and Multimedia, Vol. 4 (1998) 141-161.

47.Specht, M., Kravcik, M., Klemke, R., Pesin, L., Hüttenhain, R.: Adaptive Learning Envi-
ronment (ALE) for Teaching and Learning in WINDS. International Conference on Adap-
tive Hypermedia and Adaptive Web-Based Systems (2002) 572-581

48.Vassileva, J., Deters, R.: Dynamic courseware generation on the WWW. British Journal of
Educational Technology, Vol. 29:1 (1998) 5-14

49.Vassileva, J.: DCG + GTE: Dynamic Courseware Generation with Teaching Expertise.
Instructional Science, Vol. 26:3-4 (1998) 317-332

50.Wainer, H.: Computerized Adaptive Testing: A premier. New Jersey, Lawrence Erlbaum
Associates (2000)

51.Weber, G.: ART-WEB. Trier Ed.: University of Trier (1999)
52.Weber, G., Kuhl, H.-C., Weibelzahl, S.: Developing adaptive internet based courses with

the authoring system NetCoach. Proceedings of Third workshop on Adaptive Hypertext and
Hypermedia (2001) 35-48

53.Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques,
Morgan Kaufmann (2005)

