
Adaptivity in GRAPPLE:
Adaptation in Any Way You Like

Paul De Bra, David Smits, Mykola Pechenizkiy, Ekaterina Vasilyeva

GRAPPLE Project,
Eindhoven University of Technology (TU/e)

Eindhoven, The Netherlands
grapple@win.tue.nl

Abstract: GRAPPLE is an EU funded IST FP7 project that brings together a group of researchers
into adaptive learning technology and environments and developers of learning management
systems (LMSs), in order to offer adaptive learning as a standard feature of future LMSs. This
paper presents the adaptation engine used in GRAPPLE, and explains why we consider it to be a
truly general-purpose adaptive learning environment (ALE). In particular the paper describes how
the core adaptation component (or engine) can be configured to perform any kind of adaptation to
any type of XML document, and how it is designed to communicate and work with other systems,
in particular with (different) LMSs.

Introduction

After some initial isolated research efforts the field of adaptive technology-enhanced learning (or adaptive
TEL) really took off with the publication in 1996 of the seminal paper on adaptive hypermedia by Peter Brusilovsky
(Brusilovsky 1996), which was updated in 2001 (Brusilovsky, 2001). A large number of research papers appeared in
journals and at conferences such as WebNet/ELearn, Intelligent Tutoring Systems, ED-MEDIA, User Modeling, and
later also the dedicated Adaptive Hypermedia conference series. A number of research prototypes of adaptive TEL
systems were built, and mostly used only for demonstration purposes, or sometimes also for adaptive course
delivery in the authors’ institutes. One noteworthy exception is the AHA! system (De Bra et al, 2006), a general-
purpose open source adaptive hypermedia platform that has been used by researchers and educators from all over the
world1. However, to date the use of adaptive technology in learning applications remains very limited. The
GRAPPLE project is aimed at changing that by bringing adaptive TEL to the masses. This is done by integrating an
adaptive TEL environment (henceforth abbreviated to ALE, for adaptive learning environment) with major learning
management systems (or LMSs) using a service-oriented (web) framework approach.

GRAPPLE bundles the expertise of researchers from 15 universities, research institutes and companies,
including the creators of the adaptive systems AHA! (De Bra et al, 2006), KBS-Hyperbook (Henze et al, 1999),
RATH (Hockemyer et al, 1998), APeLS (Conlan et al, 2002) and WINDS (Kravcik et al, 2004), of user modeling
languages and services, including UserML (Heckmann et al, 2003), (Heckmann et al, 2005a), GUMO (Heckmann et
al, 2005b) and the work of (Van der Sluijs et al, 2006), of experts in learning standards (e.g. the Open University
Nederland and Atos Origin Spain), of developers of and contributors to LMSs including Moodle, Claroline and
Sakai, and of developers of industrial TEL applications (Atos, Guinti Labs and IMC Information Multimedia
Communication AG). The goal of GRAPPLE is to have the ALE become a “standard” component of the LMSs so
that the thousands of institutes (world wide) using these LMSs automatically have access to the ALE.

In this paper we first describe why combining an ALE with an LMS is a natural combination of two tools
with complementary functionality. (This description is taken from a general overview of GRAPPLE that was
published at ED-MEDIA (De Bra et al, 2008) as a poster.) We then describe the ALE used in GRAPPLE, which is a
complete redesign of the AHA! system. The redesign specifically aims to turn AHA! into a modular architecture
with explicit communication between components, enabling it to interface to other modules of an LMS. We also
show how system designers can completely tailor the adaptive functionality of the adaptation engine to fit their
needs.

1 Some noteworthy examples are the AlcoZone alcohol tutorial from Virginia Tech (Bhosale, 2006), an automata
theory course from Korea University (Lee et al, 2005) and a programming course from the Slovak University of
Technology (Bieliková et al, 2005). We are also aware of on-going work in Brazil, Colombia, and South Africa.

The “marriage” between an ALE and LMS

Many institutes in higher education, but also (large) knowledge-intensive companies, use a learning
management system to manage the learning process. This management consists of both administration of the
processes and their outcome and of facilitating the learning itself by means of course selection, delivery and
evaluation tools. The functions of an LMS include (but there are many more):

• registering (and later perhaps deleting) users, and authorization (login, access restrictions)
• enrollment in courses (or other types of learning modules)
• workflow (task management, notifying learners of assignments that are due, assignment of new tasks after

assessment of completed tasks, notifying tutors of completed assignments to be graded, etc.)
• distribution (or delivery) of learning material
• assessment (including multiple-choice tests, but also upload of assignment work for off-line assessment by

a tutor)
• portfolio management (certifications, registration of completed courses or course programs)
• etc.

One would expect that the distribution of learning material would be very well supported by all LMSs and widely
used. However, in a lot of cases this part of the LMS is only used (in practice) to serve documents (complete course
texts as a single Word or pdf file, Powerpoint slides, etc.) that are not well integrated with the functionality of the
LMS and do not enable fine-grained tracking of the learner’s progress. This is where the ALE comes in. It performs
the following functions:

• presenting a course text as a website (pages with links, allowing fine-grained tracking of the learner’s
progress)

• adaptive guidance through link generation, sorting, hiding or annotation
• adaptive page content to automatically compensate for missing prerequisite knowledge
• possibly other adaptive tools like adaptive tests, collaborative filtering (of links), etc.

In order to successfully combine an LMS and an ALE the following types of integration facilities are needed:
• single sign on: when a learner logs on in the LMS, goes to a course sub-site, and then to a course page (s)he

must be automatically be logged on in the ALE (and registered if this was not yet the case);
• user model/profile exchange and communication: the ALE must have access to the information the LMS

stores about the user (e.g. results of multiple-choice tests, but also previously attended courses or skills and
knowledge obtained elsewhere but registered in the LMS); potentially the LMS may need user information
from the ALE as well, to record what the user has studied, at a high level of abstraction (whereas the ALE
keeps a fine-grained user model).

When an LMS and ALE are properly integrated the learner should not be aware that some of the used services are
offered by the LMS and others by the ALE. This can be achieved by having the ALE operate as one of the LMS’s
tools, presenting its output in one or more frames within the total presentation form offered by the LMS. GRAPPLE
aims at realizing such seamless integration between its ALE and different LMSs. It remains to be seen how seamless
the integration will be in the end. In an early experiment we have realized (in a collaboration with the University of
Linz, Austria) a truly seamless integration between the AHA! system and Sakai. This experiment has shown that
such ALE-LMS integration is possible.

The GRAPPLE ALE architecture: AHA! version 4

Figure 1 shows the architecture of the GRAPPLE ALE part (which we will simply refer to as AHA!
version 4 or AHA! for short). A prototype of this system is already in (production) use at the Eindhoven University
of Technology, serving an adaptive course text on the topic of “hypermedia structures and systems”.2 (The prototype
is not yet connected to an LMS.) In this paper we focus our attention on the parts that make the adaptation in AHA!
highly customizable: the processors and modules. The remainder of the architecture is highly customizable as well:
the choice of event bus implementation, user model service and -cache, domain model service and -cache, login
manager and concept manager can all be replaced by indicating in a configuration file that a different
implementation should be used.

2 This course can be found at http://wwwis.win.tue.nl/2ID65/ and is open to visitors. You can create your own login
or browse the course anonymously, with complete adaptive functionality available.

Figure 1: AHA! version 4: the GRAPPLE ALE architecture.

In GRAPPLE an application (or course) is described at a high level using a Conceptual Adaptation Model

(or CAM). The language used to describe a CAM is still being designed, but initial ideas are described in (Hendrix
et al, 2008). In the absence of a “real” CAM (and authoring tools to create it) the current AHA! domain model
component is an import module for (already slightly extended) AHA! version 3 structures. The adaptation as seen by
the engine (AHA! version 4) consists of event-condition-action rules that define user model updates, and
expressions over the domain model (DM) and user model (UM) to select content, choose link adaptation elements,
choose layout, processors and modules to use, etc. Although the conditions and actions typically evaluate
expressions and perform assignments, AHA! allows the expressions and assignments to contain arbitrary Java code,
thereby making them very powerful adaptation tools.

AHA! Processors

 When AHA! receives a request for a concept, the “Config Manager” merges a hierarchy of configuration
files to decide which processors and modules to use for processing the request, and possibly with which
configuration options. We look here at two of these processors: the LayoutProcessor and the XMLProcessor.

• When a concept is requested the configuration determines whether to create a layout for it or not, and if so,
which LayoutProcessor to use for it. (Layout for (X)HTML uses “frames”, but for other document types
this may be different.) In our hypermedia course for instance we use a condition:

 <layoutprocessor merge="replace" expr="${c2ID65.introductorypart.done}">
 <code>nl.tue.aha.ae.processor.LayoutProcessor</code>
 <update>true</update>
 </layoutprocessor>

This indicates that the layout processor is only used after the “introductory part” is “done”. (This is a
Boolean attribute of a concept in UM.)
The layout processor (when it is used will use a configuration (not shown here) to decide which frameset to
generate. Each frame is assigned a view to be presented in the frame. AHA! has completely generated view

types, for instance presenting a partial table of contents (or fish-eye view) of an application (or course), and
it also has a “MainView” view type, used to present an adapted version of a page or resource.
When the frameset is returned (to the browser) it will result in the browser requesting the same concept as
in the original request, but now with a view associated with it. This will tell AHA! not to call the layout
processor again, and not to update the user model (which was done when the original request was
received).

• The LoadProcessor, HTMLProcessor (when needed to convert HTML into XHTML) and ParseProcessor
together produce a DOM tree in memory. The XMLProcessor is responsible for performing the adaptation
to that DOM structure. It walks through the DOM tree, and when it encounters an XML tag (element)
associated with a module in the configuration file it calls that module to perform adaptation. (See next
subsection.) When the XMLProcessor reaches the end of the DOM tree the SerializeProcessor converts the
in-memory structure back into a (textual) XML file to be returned to the browser.

AHA! Modules

 AHA! can perform adaptation to any XML format. In the GRAPPLE project we not only consider XHTML
but also other XML formats including X3D used for virtual reality, SMIL used for multimedia, etc. In the
configuration files (for handling concepts) the <xmlprocessor> part expects a <modules> element that contains the
definition of modules that handle certain XML tags (or elements). An example of such a module definition is:

 <linkmodule merge="replace">
 <code>nl.tue.aha.ae.processor.xmlmodule.LinkModule</code>
 <tagname>a</tagname>
 <condition><jexpr paramnames="element"
 paramtypes="org.w3c.dom.Element">
 "conditional".equals(element.getAttribute("class"))</jexpr></condition>
 <layoutattribute>class</layoutattribute>
 <conceptattribute>href</conceptattribute>
 </linkmodule>

Every module definition should contain two tags: “code” and “tagname”. The XMLProcessor uses these to decide
which (Java) code to use for the module and which XML tag is adapted by this module. The name “linkmodule” can
be chosen arbitrarily and has no meaning to either the XMLProcessor or the module itself.
 The remaining tags within the module definition are passed onto the module code itself, and have no
meaning to the XMLProcessor. The default “LinkModule” that AHA! provides will perform the following actions:

• The condition is used to decide whether the module will adapt the element or not. In this case we have
defined the condition to check whether there is a “class” attribute that has the value “conditional”.

• The layoutattribute defines which attribute will be generated and/or adapted, in this case the “class”
attribute. (This happens to also appear in the condition but that’s not required in any way.)

• The conceptattribute defines which attribute contains the concept to be used for the adaptation. For this
module, dealing with links, each link refers to a concept and the adaptation of the link is defined through
expressions over the UM attributes for this concept. We have omitted this part of the definition here
because of lack of space.
AHA! comes with a number of modules predefined, for instance to handle “if” tags defining conditionally

included fragments of text, “object” tags defining conditionally included objects (files), “variable” tags used to insert
values from or expressions over the user model (an example is the inclusion of the user’s name in a header), a
module for generating multiple-choice tests, etc. Other modules can be added at will, and modules can be associated
with any XML tag. In our example hypermedia course for instance we use the HTML imagemap feature (with client
side imagemaps) and we associated the LinkModule with the “area” tag so as to adapt “area” tags just like “a” tags.
Of course when the GRAPPLE project will be “delivered” the ALE (AHA!) will be equipped with a very large
number of predefined and implemented processors and modules, because we do realize that most authors and
application designers will only configure the adaptation process and not develop new processors and modules to suit
their specific adaptation needs.

Conclusions and Future Work

The GRAPPLE project promises to bring adaptive TEL to the masses by incorporating an adaptive learning
environment (ALE) in popular learning management systems (LMSs). This ALE is based on a redesign of the AHA!
system (called AHA! version 4). Because GRAPPLE is not just a research project but aims to deliver a production-
quality ALE a lot of attention must be paid to its flexibility and extensibility so as to enable it to perform adaptation
in any way an author or designer may want. Because we as developers of the adaptation engine cannot foresee all
possible adaptation desires, we have opted to create an architecture that makes it easy to tell the engine to use
different processors and modules for performing adaptation, and to provide a large variety of configuration options
for processors and modules.

Further developments in the GRAPPLE project, before, during and after ELearn 2008, can be followed at
www.grapple-project.org.

Acknowledgement

This work is has been performed in the framework of the IST project IST-2007-215434 GRAPPLE which
is partly funded by the European Union. The authors would also like to acknowledge the contributions of their
numerous colleagues from all 14 GRAPPLE project partners.

References

Bieliková, M., Kuruc, J., Andrejko, A. (2005). Learning Programming with Adaptive Hypermedia System AHA!.,
Proc. of ICETA 2005 – 4th Int. Conf. on Emerging e-learning Technologies and Applications, Slovakia, pp. 251-
256.

Bhosale, D. (2006). AlcoZone: An Adaptive Hypermedia based Personalized Alcohol Education. Master Thesis,
Virginia Tech, available at http://scholar.lib.vt.edu/theses/available/etd-05172006-153545/.

Brusilovsky, P. (1996). Methods and techniques of adaptive hypermedia. User Modeling and User-Adapted
Interaction, 6 (2-3), pp. 87-129, Kluwer.

Brusilovsky, P. (2001). Adaptive hypermedia. User Modeling and User Adapted Interaction, Ten Year Anniversary
Issue, 11 (1/2), pp. 87-110, Kluwer.

Conlan, O., Hockemeyer, C., Wade, V., & Albert, D. (2002). Metadata Driven Approaches to Facilitate Adaptivity
in Personalized eLearning systems. The Journal of Information and Systems in Education, 1, 38–44.

Cristea, A., De Mooij, A. (2003). LAOS: Layered WWW AHS Authoring Model and its corresponding Algebraic
Operators. Proceedings of the WWW Conference, Alternate Education Track, pp. 301-310, Budapest, Hungary.

De Bra, P., Pechenizkiy, M., van der Sluijs, K, Smits, D. (2008) GRAPPLE: Integrating Adaptive Learning into
Learning Management Systems. Proceedings of the AACE ED-MEDIA Conference, pp. 5183-5188.

De Bra, P., Houben, G.J., Wu, H. (1999) AHAM: A Dexter-based Reference Model for Adaptive Hypermedia.
Proceedings of the ACM Conference on Hypertext and Hypermedia, pp. 147-156, Darmstadt, Germany, 1999.

De Bra, P., Santic, T., Brusilovsky, P., (2003) AHA! meets Interbook, and more... Proceedings of the AACE ELearn
2003 Conference, pp. 57-64.

De Bra, P., Smits, D., Stash, N. (2006). The Design of AHA!, Proceedings of the ACM Conference on Hypertext
and Hypermedia, pp. 133, Odense, Denmark. The adaptive version of this paper is available on-line at
http://aha.win.tue.nl/ahadesign/.

Heckmann, D., Krüger, A., (2003). A User Modeling Markup Language (UserML) for Ubiquitous Computing. In
Proceedings of User Modeling 2003, 9th Int. Conf., Johnstown, PA, pp. 393-397, LNCS, Springer Verlag.

Heckmann, D., Schwartz, T., Brandherm, B., Kröner, A. (2005a) Decentralized User Modeling with UserML and
GUMO. Proceedings of the Workshop on Decentralized Agent Based and Social Approaches to User Modelling
(DASUM 2005), Edinburgh, Scotland, pp. 61-65.

Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., Wilamowitz- Moellendorff, M. von. (2005b) GUMO -
the General User Model Ontology. Proceedings of the 10th International Conference on User Modeling, LNAI
3538, pp. 428-432, Edinburgh, Springer Verlag.

Hendrix, M., De Bra, P., Pechenizkiy, M., Smits, D., Cristea, A. (2008) Defining adaptation in a generic multi layer
model : CAM : The GRAPPLE Conceptual Adaptation Model. Proceedings of the 3rd Europeanl Conference on
Technology Enhanced Learning (EC-TEL), Springer LNCS. (page numbers still pending)

Henze, N., Nejdl, W. (1999). Adaptivity in the KBS Hyperbook System. 2nd Workshop on Adaptive Systems and
User Modeling on the WWW, workshop held in conjunction with the World Wide Web Conference (WWW8) and
the International Conference on User Modeling.

Hockemeyer, C., Held, T., & Albert, D. (1998). RATH –- A Relational Adaptive Tutoring Hypertext WWW–
Environment Based on Knowledge Space Theory. In C. Alvegård (Ed.), CALISCE`98: Proceedings of the Fourth
International Conference on Computer Aided Learning in Science and Engineering (pp. 417–423). Göteborg,
Sweden: Chalmers University of Technology.

Kravčik, M., Specht, M., Oppermann, R. (2004). Evaluation of WINDS Authoring Environment. Third International
Conference on Adaptive Hypermedia and Adaptive Web-Based Systems (AH2004), pp. 166-175, Eindhoven,
LNCS3137, Springer Verlag, 2004.

Keewoo Lee, Hyosook Jung Seongbin Park (2005). Applying adaptive hypermedia technologies to a learning tool.
Fifth IEEE International Conference on Advanced Learning Technologies, ICALT, pp. 202-204.

Van der Sluijs, K., Houben, G.J. (2006). A Generic Component for Exchanging User Models between Web-based
Systems, International Journal of Continuing Engineering Education and Life-Long Learning, Vol. 16, Nos. 1/2, p.
64-76, Inderscience.

