AHA! meets|nterbook, and more...

Paul De Bra’ and Tomislav Santic Peter Brusilovsky
Department of Computing Science School of Information Sciences
Eindhoven University of Technology (TU/e) University of Pittsburgh
PO Box 513, Eindhoven 135 North Bellefield Avenue
The Netherlands Pittsburgh, PA 15260
debra@win.tue.nl, tomi @santic.nl peterb@mail.sis.pitt.edu

Abstract: The AHA! system (De Bra & Calvi, 1998, De Bra et al, 2002) has been repeatedly
extended over the past few years, focusing on adaptation flexibility. This has resulted in a powerful
adaptation engine, but little support for creating adaptive applications. AHA! provides tools for
defining the conceptua structure and the adaptation of an application, but leaves the presentation
and additional support tools up to the author of that application. Interbook (Brusilovsky et al, 1998)
on the other hand is a simple environment for creating and serving adaptive textbooks, with arich
user interface characterized by the use of multiple windows and frames. Authors write an annotated
Microsoft Word file, which is translated to a series of files used by Interbook. This paper presents
an extension of AHA! that enables a high-level specification of the presentation (layout) of an
AHA! application. We illustrate this extension through a powerful demonstrator: an Interbook to
AHA! compiler. The source format for Interbook is translated to AHA! with the new Layout
model. The dynamic structures of the Layout model are easily extendible and give author the power
to adapt the user interface to the nature of the application. AHA! can thus “emulate” not just
Interbook but other adaptive environments as well.

I ntroduction

Numerous Web-based adaptive hypermedia systems have been developed within the last 10 years
(Grigoriadou et al, 2001, Henze & Nejdl, 2001, Melis et a, 2001, Weber & Brusilovsky, 2001). These systems all
have a different “look and feel” and offer different ways of adaptation. Y et, behind this diversity an expert can find a
reasonably limited set of methods and techniques (Brusilovsky, 1996, Brusilovsky, 2001). A major motivation
behind the AHA! project (De Bra& Calvi, 1998, De Bra et al, 2002) was developing a flexible adaptive hypermedia
architecture that can be used for implementing a wide variety of adaptation methods. AHA! was created as an
“assembly language” of adaptive hypermedia in the sense that any higher-level adaptation paradigm can be
expressed in terms of AHA! and simulated by the AHA! engine. The most recent AHA! version (De Bra et al.,
2002) was shown to be very powerful in this respect. The reasonably advanced adaptation paradigm implemented in
the InterBook system (Brusilovsky et al, 1998) can be simulated by AHA! (De Bra et a, 2002, Wu et al, 2001).
However, recreating the layout/presentation offered by InterBook would be very laborious, as until now AHA! did
not offer any support for multi-frame presentations. (Multi-frame applications are possible, as demonstrated in a
course offered at the TU/e, but the synchronization between the frames has to be programmed by the author, using
JavaScript.) The AHA! engine responds to an HTTP (get) request by returning one HTML document to the browser.
When using multiple frames, the requests to load HTML documents in the different frames are treated by AHA! as
completely independent requests. In other words, the AHA! engine does not “know” that multiple frames exist in the
application. In contrast, many modern adaptive Web-based hypermedia systems use rich multi-frame or even multi-
window interfaces. InterBook is a good example here. It uses several multi-frame windows (textbook, glossary, and
table of contents). An example of InterBook’ s Textbook and Glossary windows is provided in (Fig. 1).

The goa of the project introduced in this paper was to resolve the problem by developing a flexible
interface model for the AHA! engine. Following the idea of AHA! that can be used to describe a variety of
adaptation functionalities, we wanted to develop an interface model that is used to describe a variety of adaptive
Web-based hypermedia interfaces. The primary goal of our project was reasonably modest: we wanted to extend the
AHA! engineto enable it to simulate the InterBook adaptation mechanism and its multi-frame interface. In doing so,
we wanted to avoid narrow-minded solutions and hacks (like the Javascript hack previously used with AHA!),
developing a reasonably universal approach that can be used to implement the InterBook interface along with many
other interfaces. This paper presents the first results of our work.

" Also at the “Centrum voor Wiskunde en Informatica’ in Amsterdam, and the University of Antwerp, Belgium.

To introduce the background for our work, we start with a brief introduction of the InterBook and AHA!
interfaces. After that, we present our Layout Model that extends AHA! and demonstrate how it can be used to
simulate the InterBook interface in AHA!.

TheInterBook Interface Paradigm

InterBook has two main kinds of windows - a Textbook window, left on (Fig. 1), and a Glossary Window,
right on (Fig. 1). These windows correspond to two major kinds of information items supported by InterBook - a
book page and a domain knowledge concept. Each window in InterBook can include multiple links to concepts and
pages. A click on any page link causes the linked page to be |oaded in the Textbook window. A click on any concept
link causes the information about the linked concept to be loaded in the glossary Window.

Despite of its complicated interface, InterBook attempted to support a simple metaphor - one window
shows one and only one information item - i.e., a textbook window shows exactly one page of atextbook at atime.
While each of these two windows includes several frames, there are considered not as independent windows, but as
multiple views on the same concept or page. For example: the text frame (bottom left) presents the text of the page;
the navigation bar (top) presents the location of the current page among its ancestors and siblings, and the concept
bar (bottom right) presents prerequisite and outcome concepts for the current page. All four frames of the textbook
window are updated at the same time. Technically, a link to a textbook page is calling a whole page frameset to be
loaded into the textbook window. This frameset, in turn, pulls several frames associated with the requested page.
The frameset approach is simple to understand and also works well with most browsers' standard way of navigation
using back and forward buttons and history.

Netscape: ACT-R Lesson Units Netscape: Glossary and Concepts

2 » A & 2 £ @

Back Forward Reload Horne Search Guide Images

ACT-R Lesson Units
+#1nit 1: Tnderstanding Production Systems
¥ Section 1.1: The ACT R Prosiuction Systerm

#1.1.1 Declarative Unite in ACT-R
% 1.1.2 Prosduction Rulesin ACT-R
+1.1.3 Production Rule Format
@114 ACT R's Condition Form
#1.1.5 ACT-R's Action Side

1.1.2 Production Rules~ in ACT-R-+

Content

Glossary

Help @problem testing
@procedural knowledge

< procedural memory

< production

@Production parameter
«Froduction parameters
procedural @Production Parameters Di.

o=
=
=

[| 42 [[1 [
(D] = [|2 [1 |

Search

Interface

[22 S P9 | |2
[P =3 |0 |E | |2

A production~ rule is a staternent of a particular

contingency that confrols behavior. Examples might owiedze @Production par ters wie
be ST e
; < production rule
IF the goal+ is to classify & person Ou t
and he is unmerried [
THEN classify him as a bachelor acticn Pmducﬁﬂn»
condition
IF the goal is to add two digits di and dZ in rosedural Preductions are condition+-action+ rules which specify
and di+ dz = d3 ‘memery what to do in a situation.

THEN set as a subgoal~ Lo write d3 in the col
This concept is introduced on these pages:

moduction @1 1.2 Production Rules in ACT-R

£ ¥ 113 Production Rule Format

@Section 1.5: Creating Declarative Structure

“Froduction

The condition~ of a production rule (the IF part)
consists of a specification of a goal and a number of
chunks+ while the action~ of a production rule (the
THEN part) basically invelwes the creation or
medifications of some chunks. The abowe iz an
informal English specification of production rules.
“ou will learn the symitax for their precise
specification within the ACT-R systern.

Knowledge about this concept is required for:
#Zection 1.6 Writing Froductions
@Section 2.1: English Rules
@ Shiacline smon-atonui alaments
@ Fun 4rcamanits

A production rule specifies an to be taken

when a is met.

= | | = | | =]

Figure 1: InterBook interface.

The AHA! Interface Paradigm

AHA! was initially created to add adaptation to the course on hypermedia at the Eindhoven University of
Technology (currently available at http://wwwis.win.tue.nl/2L690/). This course predates the general availability of
frames in browsers. The course was therefore written using a single frame layout. The browser showed one course

page at atime, with adapted links and conditionally included fragments. AHA! also added an optional header (with a
progress report) and footer (with copyright statement). Header and footer were created by the author as html
fragments. Multi-frame applications are possible in AHA!. (Fig. 2) shows part of the multi-frame interface paradigm
used in a course on graphical user interfaces, also at the TU/e.

1 Graphical User Interlaces - Mozila {Buikd 100 200202 0085} B _' =10 =
fms mk Wew G Goodmels Tock Wedow teb Delg g0
i - A BE [ttschivenmasovinctin. o 850 et A s S oz el =l | ik - m
| hrove | whBeckmaks P Traflene g o TT R - Fles .. g Clasie B _Prona Can gPASY - Euronest frest...
Fosd Map Pl Dot Bl b zeadd P pages o sndll buas L6 praged 10 seadd {les s powd, Gieses 30l 10 de)
T u /E cali peefirenres - Raowleige and sellings - ckasgs pasewosd - s seage Toad - g oul
R
mirodichon
TIT e
srgenimis adiie Evaluating User-Interface Design Without Users
svaliahin
T LR There are good reasons for performing evakiatons wathout wsers (o addhon to teskng with users):
o walkimaugh
wha * Tlsers e cnly kmated tmme for takmg part m the design and evaluation. Therebore, the user-mterface sheuld be Gee of (gonal)
prepare preblems which can be easly fornesan and averded.
Lank for # Evaluahcn with scly a Few users may not reweal all problems abarge numbes of Sl end-uzers will expenience, becasss not al
casolia pessbiies of the apphoaton and user-mterface wil be ned.
At analysi + While the user-mperface is berg doveloped the test-users are sl losrmg the mterface. They may net encounter the problems
Eormal - exp ereenca d usars wall encounler lalar.
wfarmal

P There are three popadar ewabaateon techniques whech ane peformed witheut feohang test-umers
ezt

T UEErE + cognitive wallzthrongh e technique is espe cialy usefal for bask-centered design

+ ncrion analysis thes technique is used to estimate e toe an expert user wil need to perform a task weng the berface
liennistic evalnation vueing a checldst one may catch a wade vanety of problems, but this technique requires svahiators with
knowdedge of usabdity problems

assignament
TT develepment
Java

mpplets

assignments

instnuctions Comgright @ Fad De Bes, 1907, 1955, 1959, 2000
Alnghte reservad

Figure 2: AHA! multi-frame interface.

In order to make this interface work in AHA!, every page must include the following piece of Javascript code:

<script |anguage="JavaScri pt">

parent.franes[0].locati on="content.xm "

</script>
The result is that when a link to a page is followed the leftmost frame is reloaded. It contains the “content” file,
which is a navigation menu in which submenus are conditionally shown, based on which page is displayed in the
rightmost frame. The access to a page and the subsequent access to the menu are treated separately by AHAL.
Whereas in Interbook following a link requests a complete frameset from the server in AHA! following a link
requests a page, to be shown in a complete browser window or inside a frame. The AHA! engine does not “know”
about a possible use of frames.

The View-Based L ayout M odel

The View-Based Layout Moddl is the new way in AHA! to present concepts (pages) to the user. It was
developed to address the lack of user interface possibilities in the earlier versions of the AHA! architecture. The
Layout Model combines the strong points of InterBook’s rich user interface with the flexibility and customization
style that are typical for the AHA!-architecture. This model alows every adaptive courseware developer to adapt the
user interface to the course nature (without the need for the above mentioned Javascript hack).

To provide a high level of flexibility, the Layout Model was designed as a three-level interface model that
is based on the concepts views, viewgroups and layouts. In brief, views are considered as atomic interface elements.
Views can be grouped in viewgroups. One or more viewgroups form alayout. These concepts are presented in more
detail below.

Views

Views are pieces of information about the course domain. They usually represent some relevant
information about the active concept (the concept the user is viewing at the moment). A view can also represent
some static information about the course domain. Views are used as pre-fabricated building blocks to construct the
user interface for some specific course. Internally views are simply Java classes that generate HTML pages (frames)
using underlying AHA! data structures. To present a concept to the user the system uses a set of predefined views.
These predefined views can be further customized by the author of the course to develop an interface that meets the
needs of the course. The author defines and customizes a view using an XML-based description language like the
following:

<vi ew name="v5" type="Tool boxView' title="Tool box"

backgr ound="1 Bookbl uesq. bmp" paranms="1eft space=70">
<secwnds>
<secwnd | ink="TOC" vi ewgroup="TOC" i ng="ContentBtn. bnp"/>
<secwnd | ink="d ossary" vi ewgroup="d ossary"
i mg="d ossaryBt n. bmp"/ >
</ secwnds>

</ vi ew>
At the moment we have already implemented a number of relatively simple basic views. The configuration of these
views consists of setting the background picture, the title or changing the page margin to make the view more
readable. It is possible however to implement much more complex views that will offer much more tuning
possibilities to the author. We are considering parameters that will influence the content of the view page and not
only the shape of it.

A view usually displays some information about the active concept including links to other relevant
concepts. However a view can also contain links to other views which will offer more information to the user about
the active concept. Following one of these links will result in displaying a new set of views. Views that are used
directly to represent different aspects of a concept are called primary views. Views that present some supplementary
information are called secondary views (and appear in secondary viewgroups). These views and viewgroups are not
visible until they are triggered by alink in one of the primary views. The author of the course will usually choose the
most important views as primary views and less important views as secondary views. The connection between
primary and secondary views can be specified by the author of the course in the XML view structures presented
above. In the presented example ToolboxView can trigger two secondary viewgroups: Table of Content and
Glossary.

Viewgroups and L ayouts

As aready said views are the building blocks for constructing concept representation. Views can be
grouped in viewgroups. In HTML terms a viewgroup corresponds to an independent window and a view
corresponds to a page that can be shown in a separate browser window or in an HTML frame within a window. A
set of viewgroups forms a concept layout, which is the entire presentation of a concept. Practically, it means that
different aspects of a concept can be presented in several synchronized windows.

We assume that the system may have more than one type of concepts (pages). For example, InterBook has
a textbook page and a glossary concept that are both concepts in terms of the AHA! architecture. We also assume
that an author of an adaptive course may want different types of concepts to be presented differently (this is what
happens in InterBook). To support this possibility, our Layout Model alows an author to define several layouts.
Each concept type has to be associated with one of the layouts. Presenting concepts of the same type always in the
same way (using the same layout) contributes to the user confidence in the system and avoids confusion. Links to
the concepts of the same type are also annotated in the same way for obvious reasons.

The following XML structure is an example of a layout definition for two layouts that we use to simulate

an InterBook style user interface:
<l ayoutlist>
<l ayout name="page_c_layout" trigger="MAlI N'>
<vi ewgr oup nane="MAI N' wndOpt =" wi dt h=800, hei ght =600" >
<compound franestruct="rows=20% *" border="0">
<conpound franestruct="col s=*, 130" border="0">
<vi ew ef nanme="v1" />
<vi ew ef nanme="v5" />

</ conmpound>
<conpound franestruct="col s=*, 130" >
<vi ew ef nane="v3" />
<vi ew ef nanme="v2" />
</ conpound>
</ conmpound>
</ vi ewgr oup>
<vi ewgr oup
nane="TOC'" wndOpt ="r esi zabl e=1, t ool bar =1, wi dt h=300, hei ght =400" >
<vi ew ef name="v1"/>
</ vi ewgr oup>
<vi ewgr oup
nane="d ossary" secondary="true" wndQpt="wi dt h=600, hei ght =500" >
<vi ew ef nane="v4"/>
</ vi ewgr oup>
</l ayout >
<l ayout nanme="abst_c_layout" trigger="d ossary" >
<vi ewgr oup
nane="d ossary" wndOpt ="t ool bar =1, wi dt h=600, hei ght =500" >
<vi ew ef name="v4"/>
</ vi ewgr oup>
</l ayout >
</l ayoutlist>

We have defined two layouts each associated with one of the two concept types that we use in AHA! at the moment;
page concepts and abstract concepts. As can be seen in the example above each layout consists of a set of
viewgroups which contain pointers to predefined views. Viewgroups use compound elements to define the place of
each of the views within the window. For each viewgroup the author of the course can also define window options
for the window in which the viewgroup is placed. The layout structure of layout ‘page ¢ layout’ above corresponds
to the screen presented in (Fig. 3).

2 MAIN - Microsoft Internet Explorer,

File Edit Wew Favorites Tools Help :,'
= . ~ a
. \) At - ; A T — o
Q Back. ? \ﬂ \ELI | Search 1. Favories @ Media @f = “F
Address @;‘] http: fflocalhost: 8080/ aha/Get/params: concept=c2L690, dexteranchar b a Go Links ** | Martan Antivirus E -
. A~
0 index
W itro
5] hyperdocument
@ hierarchies
fen . v
. . ~
TUE - Hypernews - Tzer tomi has read 33 pages and still has 169 pages to read - Read Background:

pages - Still has to read - Color preferences - Enowledge 21630 - Change password -
21650 - Log out

dexfer

Quicome:

Anchoring in the Dexter model
The Dexter model provides a unique identifier (I for each component. But in order to deddstenchior
wnplement linkes fromfto parts of a component it must be possible to also identifiy substructures dexteranchoring 7
within components. In order to preserve the boundary between the hypertext network per se

and the contentistructure within the components, this mechansm cannot depend in any way on

knowledge about the mnternal structure of (atormic) components. In the Dexter model, this is

accotnplished by an indirect addressing entity, called the anchor. An anchor has two parts: an

anchar id and an anchor valfus. The anchor value 15 an arbitrary value that specifies some

location, regon, ttem, or substructure within a component. Thiz anchor value can only be

mterpreted by the applications responsible for handling the content/structure of the component.

Tt 1z primitive and unrestricted from the wewpoint of the storage layer. The anchor id 15 an

identifier which uniquely identifies the anchor within the scope of tts component. Anchors can

therefore be uniquely identified across the whole uiverse by a component TID and an anchor

id.

The two part composttion of an anchor i3 designed to prowide a fized point of reference for use %€ *
@I] & Local intranet

Figure 3: InterBook style concept layout for ‘page’ concepts

This layout consists of four primary views grouped into one viewgroup, which is shown in the figure, and two
secondary views (Glossary and Table of Content) which can be triggered by the buttons in the ToolboxView (upper
right corner).

Changing the XML configuration structures will change the layout associated with a certain concept type.
The following example of an XML configuration structure uses the same views for the same concept type but

grouped in a different way:
<l ayout nane="page_c_|layout" trigger="MAl N'>
<vi ewgr oup nane="MAl N'
wndOpt =" st at us=1, menubar =1, r esi zabl e=1, t ool bar =1, wi dt h=800, hei ght =600" >
<conpound franestruct="col s=200, *" >
<compound franestruct="rows=*, 85" >
<vi ewr ef name="v1" />
<vi ewr ef name="v5" />
</ conmpound>
<vi ew ef nane="v3" />
</ conpound>
</ vi ewgr oup>
<vi ewgr oup nane="Concept bar"
wndOpt =" st at us=1, menubar =1, r esi zabl e=1, t ool bar =1, wi dt h=300, hei ght =400" >
<vi ewr ef name="v2"/>
</ vi ewgr oup>
<vi ewgr oup nane="d ossary" secondary="true"
wndOpt =" st at us=1, menubar =1, r esi zabl e=1, t ool bar =1, wi dt h=600, hei ght =500" >
<vi ewr ef name="v4"/>
</ vi ewgr oup>
</ | ayout >
The corresponding screen layout for the XML configuration structure above is shown in figure 4.

2 MAIN - Microsoft Internet Explorer g@@‘ -2 Conceptbar - Micro... g@@|
Fle Edit Wiew Favorites Tools Help 7 Fle Edt Wew Favorkes > gk
- = n »
G Back ~ () Iﬂ |§| gl) search ¢ Favories d?' Media <) V= Ly €) Notton Antivirus g -
Address | @] hitp: fflocalhost:8080) shaiGet [params: concept=c2L 690, kour v E: Go Links > Norton Antivins E -
¥ Background:
D jndex TUE - Hypernews - User tomi has read 34 pages and still has 168 pages to read - Read
0 intre pages - 3l has to read - Color preferences - Enewledge 21690 - Change passweord - Pisferp
- 21630 - Log out
2 hyperdocument o
wicome:
W hierarchies
2 ganadu Guided Tours tour
1 tour guidediouss v
B desorct Browsing through a hyperdocument may easily lead to disorientation. When reading about
demersiorass a certain topic you would like to follow links that are relevant to that tepic enly. Also,
@ adaptive when reading a hyperdocument more lilke a beole, vou would like to be able to find a
B compactness "legical” order in which to view the nodes
E] definition & & Local intranet
a The "trails", suggested by Bush, can be viewed as some kind of "superlink”, connecting a
lustory whele series of nodes, rather than only two nodes. As long as you stay on such a guided

tour, you can sirnply click on a "next node” ancher to move along the tour,

Guided tours are most useful for systems that provide information on different subjects, or
that must guide the uszer through an information base, without too much initiative from the
uzer's part. A systemn that containg information for museum nsitors for mstance should
provide gmded tours about different aspects of the muzeum's exhibitions, Hammond and
Allinzon cotned the term "Travel Metaphot" [HABT], another termn related to tourism

Trigg [Trze-88] extended the 1dea of guded tours for the MNote Cards system by making
each "stop” on the tour a set of cards, rather than a smgle node. An accompanying
Tahiziop tool allowed authors to create these stops on the tour

Guided tours are difficult to maintain in a changing hyperdocument. Alsc, when the user
wishes to follow a tour about a topic that is relevant but for which the author hasn't created
a tour, the problem of finding a sensible path through the hyperdocument becomes very v
&) & Local intranet

Figure 4: second version of ‘page’ concepts layout

In this version of the layout associated with page concepts there are two primary viewgroups (MAIN and
Conceptbar) and one secondary viewgroup (Glossary). Viewgroup MAIN consists of three views (MainView, Table
of Content and Toolbox) and the Conceptbar viewgroup contains one view (ConceptbarView). Button ‘Glossary’ in
the Toolbox view triggers the display of the secondary viewgroup Glossary.

TheInterbook to AHA! Compiler

The fina step in our attempt of bringing AHA! and Interbook together is the implementation of Interbook to
AHA! compiler. There are several reasons that make this step extremely important:

- Testing the flexibility of our layout model by simulating real courses aready offered by other Adaptive
Hypermedia systems (in this case Interbook);
Testing the correctness of data extracted by views. We can compare the course data served by Interbook
with data served by AHA!;
Achieving of total ssimulation of Interbook by AHA!. AHA! can servereal Interbook courses that also look
like Interbook;
Authoring of Interbook courses is much easer than authoring of AHA! courses. Implementation of a bridge
between these two systems can simplify the AHA! authoring mechanism. The author can use the Interbook
authoring mechanism (using Microsoft Word and tools to generate HTML from that) to implement a course
and then use the Interbook to AHA! complier to convert the course to AHA! format. We must note that this
authoring process does not use the full power of AHA!. In particular it only uses link adaptation, not
content adaptation in the form of the conditional inclusion of fragments. (But that can be added later.)

Paradigm trandation

The most important part of the Interbook to AHA! compiler is the trandation of the Interbook concept
paradigm to the AHA! concept paradigm. These two paradigms differ in some basic aspects which make it difficult
to serve Interbook courses using the AHA! engine. The Interbook paradigm consists of text pages, also called
sections, and glossary concepts. Text pages are presented in a Text Window and glossary concepts are presented in a
Glossary Window. AHA! on the other hand sees everything as a “concept”. We introduced concept types to the
AHA! concept paradigm. This turned to be a very simple and versatile solution for our problem. Each concept is of
some type and each concept type is associated with different layout. This means that each concept type can be
represented in a different way, depending on the associated layout, which is exactly what we need to simulate
Interbook courses. AHA! does not have a predefined set of concept types. The author of a course can define any
desirable number of concept types and represent every concept type using different layout. The connection between
concept types and the layout model, which can be established using small XML configuration files, offers great
flexibility and possibility to simulate the user interface of almost every existing Adaptive Hypermedia system.

To get back to the Interbook concept paradigm, our Interbook to AHA! compiler generates three kinds of
concepts to simulate Interbook courses:

1. Items (simulation of Interbook concepts presented in a Glossary Window)

2. Sections (simulation of Interbook text pages presented in a Text Window having child nodes)

3. Leafs(simulation of Interbook text pages presented in a Text Window without child nodes)
All these concept types are associated with different layouts. The difference between Sections and Leafs is very
small. They use layouts that are almost the same with the difference that the Sections layout shows the child nodes
of the active concept and the Leafs layout does not.

Compiler Input/Output

The Interbook to AHA! compiler uses special Interbook files as input and produces AHA! formatted XML
files as output. Interbook course files are valid HTML documents that contain Interbook specific codes. These codes
are used to connect sections (text pages) and glossary concepts. Every section has a set of prerequisite concepts
(concepts that are required to be known before reading the section) and a set of outcome concepts (concepts that are
introduces by the section).

AHA! courses are saved in a different way. AHA! uses XML structures to save concept data and separate
XHTML files are used for the resources. AHA! XML concept structures are much more complex than Interbook
concept relations. Interbook uses two kinds of relations between Sections and Glossary concepts. ‘is prerequisite’
and ‘is outcome’. AHA! on the other hand uses expressions to implement different kinds of relationships. These
expressions can be of any form as long as they are syntactically valid. We use the following expressions to simulate
Interbook concept relationships and Interbook behavior:

For each prerequisite concept of each section:
‘Conceptname.knowledge>=(1/3*100)" for AHA requirement relationship which simulates Interbook ‘is
prerequisite’ relationship
For each outcome concept of each section:
‘if (required) Conceptname.knowledge+1/3* (100-Conceptname.knowl edge)
else Conceptname.knowledge+1/6* (100-Conceptname.knowledge) *
for AHA Condition-Action rules which simulate Interbook ‘is outcome’ relationship
(Fig. 5) shows the course data transformation from Interbook format to AHA! format.

REQUIREMENT RELATION:
Prerequisites: P1, P2,...
For all P in Prerequisites:

‘ P.knowledge==(1/3*100)
Section/Glossary concept Interbook to CONDITION ACTION RULES:
(HTML page} |:{> AHA! Compiler |:{> For all O In Outgomes:
il (required)
‘ O.knowledge+1/3*(100-0 knowledge)
else

Ouknowledge+ 167 (100-O knawledge)

QOutcomes: 01, 02,03,...

Concept type: [Section | Leaf | Item]

Interbook Concept data format Resouce element

Cclncept XML file

Y

Resource (Section/Glossary
concept HTML code in XHTML
file)

AHA! Concept data format

Figure5: Interbook to AHA! concept data transformation

Conclusions and Future Work

The new AHA! Layout Model offers versatile user interface possibilities and brings AHA! one step closer
to its main goal of being a generic Adaptive Hypermedia environment for all kinds of Adaptive Hypermedia
applications. View based concept presentation is extremely flexible and gives a course author the power to adapt the
user interface to the needs of the course. Internally views are Java objects with one task: extracting data from AHA!
data structures and generating HTML pages from these data. In the future we are planning to extend the user
interface adaptation possihilities by introducing the total data-presentation separation. We are thinking of giving the
author the opportunity of implementing his’hers own views, in addition to using a set of predefined views. If the
internal static AHA! data structures would be saved as XML files the author could use any standard XSLT editor to
implement views as XSLT files which could extract data from XML formatted data structures. This model would
give the author the possibility to represent the data in any desirable way without being dependent on aready
implemented views.

The Interbook to AHA! compiler is an important step towards improving the usability of both Interbook
and AHA!. Authoring adaptive textbooks for Interbook is relatively easy as it is done in Microsoft Word (together
with some conversion to HTML). Compiling the applications to (the new) AHA! makes Interbook independent of
the specific server environment required by Interbook (a Lisp-based Webserver) and opens up the possibility to add
content adaptation (conditionally included text fragments) to Interbook applications.

Acknowledgement

The development of AHA! was made possible through a grant of the NLnet Foundation, and the hospitality of the
University of Pittsburgh.

References

Brusilovsky, P. (1996) Methods and techniques of adaptive hypermedia. In P. Brusilovsky and J. Vassileva (eds.),
User Modeling and User-Adapted Interaction 6 (2-3), Special 1ssue on Adaptive Hypertext and Hypermedia, 87-129.

Brusilovsky, P. (2001) Adaptive hypermedia. User Modeling and User Adapted Interaction 11 (1/2), 87-110, also
available at http://www.wkap.nl/oasis.htm/270983.

Brusilovsky, P., Eklund, J., and Schwarz, E. (1998) Web-based education for all: A tool for developing adaptive
courseware. Computer Networks and ISDN Systems (Proceedings of Seventh International World Wide Web
Conference, 14-18 April 1998) 30 (1-7), 291-300.

De Bra, P., Aerts, A., Smits, D., and Stash, N. (2002) AHA! Version 2.0: More Adaptation Flexibility for Authors.
In: M. Driscoll and T. C. Reeves (eds.) Proceedings of World Conference on E-Learning, E-Learn 2002, Montreal,
Canada, October 15-19, 2002, AACE, pp. 240-246.

De Bra, P., Brusilovsky, P., and Houben, G.-J. (1999a) Adaptive Hypermedia: From Systems to Framework. ACM
Computing Surveys 31 (4es): http://www.cs.brown.edu/memex/ACM _HypertextTestbed/papers/25.html.

De Bra, P. and Calvi, L. (1998) AHA! An open Adaptive Hypermedia Architecture. In P. Brusilovsky and M.
Milosavljevic (eds.), The New Review of Hypermedia and Multimedia 4, Specia Issue on Adaptivity and user
modeling in hypermedia systems, 115-139.

De Bra, P., Houben, G. J., and Wu, H. (1999b) AHAM: A Dexter-based Reference Model for Adaptive Hypermedia.
In: Proceedings of 10th ACM Conference on Hypertext and hypermedia (Hypertext'99), Darmstadt, Germany,
February 21 - 25, 1999, ACM Press, pp. 147-156.

Grigoriadou, M., Papanikolaou, K., Kornilakis, H., and Magoulas, G. (2001) INSPIRE: An INtelligent System for
Personalized Instruction in a Remote Environment. In: P. D. Bra, P. Brusilovsky and A. Kobsa (eds.) Proceedings of
Third workshop on Adaptive Hypertext and Hypermedia, Sonthofen, Germany, July 14, 2001, Technical University
Eindhoven, pp. 13-24.

Henze, N. and Nejdl, W. (2001) Adaptation in open corpus hypermedia. In P. Brusilovsky and C. Peylo (eds.),
International Journal of Artificial Intelligence in Education 12 (4), Special Issue on Specia Issue on Adaptive and
Intelligent Web-based Educational Systems, 325-350, http://cbl.leeds.ac.uk/ijai ed/abstracts/\VV ol _12/henze.html.

Meélis, E., Andres, E., Blidenbender, J., Frishauf, A., Goguadse, G., Libbrecht, P., Pollet, M., and Ullrich, C. (2001)
ActiveMath: A web-based learning environment. In P. Brusilovsky and C. Peylo (eds.), International Journal of
Artificial Intelligence in Education 12 (4), Special Issue on Specia Issue on Adaptive and Intelligent Web-based
Educational Systems, 385-407.

Weber, G. and Brusilovsky, P. (2001) ELM-ART: An adaptive versatile system for Web-based instruction. In P.
Brusilovsky and C. Peylo (eds.), International Journal of Artificial Intelligencein Education 12 (4), Special Issue on
Adaptive and Intelligent Web-based Educationa Systems, 351-384: http://cbl.leeds.ac.uk/ijaied/abstracts/
Vol_12/weber.html.

Wu, H., De Kort, E., and De Bra, P. (2001) Design Issues for General Purpose Adaptive Hypermedia Systems. In:
Proceedings of Twelfth ACM Conference on Hypertext and Hypermedia (Hypertext 2001), Aarhus, Denmark,
August 14-18, 2001, ACM Press, pp. 141-150.

