
Page 2588

Creating Adaptive Textbooks with AHA!
(An Interactive RoundTable)

Paul De Bra, Natalia Stash, David Smits
Department of Computing Science

Eindhoven University of Technology (TU/e)
PO Box 513, Eindhoven, The Netherlands

{debra,nstach,dsmits}@win.tue.nl

Abstract: AHA! stands for the Adaptive Hypermedia Architecture, an adaptive authoring and
delivery platform developed as part of the Adaptive Hypermedia for All (or AHA!) project. (See
http://aha.win.tue.nl/.) Adaptation in on-line textbooks makes it possible for learners to study the
textbook in different ways without encountering difficulties. Link hiding and annotation guide
users towards subjects they are “ready” to study. Adaptive sequencing or sorting helps them decide
on a reading order for pages that teach them about a given concept. Conditional inclusion of
fragments and stretchtext make it possible to provide additional or prerequisite explanations when
needed or desired. In this roundtable (paper) we discuss the authoring process for adaptive
textbooks created with AHA!. We cover the different authoring tools for concepts, concept
relationships (like prerequisites) and adaptive object inclusion (for additional explanations). We
also cover the process of completing an application by creating content pages in standard XHTML
(or in XHTML+SMIL or SMIL 2.0) and by setting up a server. AHA! applications can also be
created using other authoring tools, including Interbook (Brusilovsky et al, 1998) and MOT
(Cristea et al, 2003), but this is described elsewhere.

Introduction and Background

Adaptive systems have started to emerge in the early 1990’s, with a strong emphasis on adaptation in
educational applications. The overview paper by Brusilovsky (Brusilovsky, 1996) marked a turning point from
mainly platform-dependent systems to Web-based environments. The updated overview (Brusilovsky, 2001) reflects
this move towards Web-based systems. The work on the AHA! system (the Adaptive Hypermedia Architecture)
started in 1996, and is still ongoing as part of the Open Source Adaptive Hypermedia for All project, partially
funded by the NLnet Foundation. AHA! is attracting interest from many institutes and development effort from
some, to add new features and tools , see e.g. (Cini et al, 2002), (Romero et al, 2002, 2003).

The main goal of AHA! is to provide a general-purpose adaptive hypermedia platform, consisting of an
authoring and a delivery part. In this paper we will concentrate on the authoring part of AHA! (but provide basic
information on setting up the server part as well). AHA! concentrates on authoring at the conceptual level. Of course
an author has to create (or retrieve and provide) pages or other content material, but AHA! first of all links pages or
resources to concepts, and the authoring is then mostly done on concepts and concept relationships. Adaptation is
specified at this level, and automatically translated (by the authoring tools) to lower level adaptation of links and
content. In Brusilovsky’s terms (Brusilovsky 1996 and 2001) the AHA! delivery system offers a rich (and recursive)
form of conditional inclusion of fragments and link hiding or link annotation .

Contrary to most other adaptive hypermedia (learning) systems AHA! enforces very little in the adaptation
or the presentation. We previously illustrated the presentation flexibility by creating a layout that closely resembles
Interbook (De Bra et al, 2003b). The layout model allows detailed control over the presentation format. Concept
relationship templates allow for the definition of adaptation to arbitrarily many different types of relationships, not
just to prerequisites. Conditional object inclusion (De Bra et al, 2003a) is a powerful means to add or select details
or explanations (without redundancy) or to select between media types. Presentation stability enables adaptation
without confusing the learner by presentations or information that changes on her when revisiting pages.

This paper is organized as follows: we first show the overall architecture and typical aspects of authoring
the content of an adaptive textbook for AHA!. We then introduce the authoring tools for creating the conceptual
structure of an application. After this main topic we briefly describe some special tools AHA! offers for educational
applications, including progress reports, forms for end-user manipulation of the user model, and multiple-choice
tests. We conclude with a short description of advanced features of AHA! (mentioned above).

Page 2589

Overall AHA! Architecture

The core of AHA! is a Java-servlet-based Web-server extension that performs adaptation to local or external pages
while serving these pages to the end-user. The adaptation is based on a conceptual structure which we call DM/AM
(for domain model and adaptation model) and on information about the user, stored in UM (for user model). In
AHA! the adaptation consists of:

• Content adaptation: AHA! allows for the conditional inclusion of objects. Whenever an <object> tag is
used in an XHTML page (or the <ref> tag in SMIL documents) with a “type” of aha/text, the DM/AM is
consulted to select which actual resource (file) is included, depending on UM values. Conditionally
included objects must be valid XML fragments, meaning that they must have a “root” tag. They need not
be complete XHTML (or SMIL) files. The conditional inclusion of objects, introduced in AHA! 3.0, has an
important advantage over conditional inclusion of fragments embedded in the page, as in older AHA!
versions, namely that when the same additional or prerequisite exp lanation is needed in different places it
need not exist multiple times. Also, conditionally included objects may themselves include other objects.
This makes for a very powerful content adaptation mechanism.

• Link adaptation: AHA! performs link annotation, by using three link colors: good for recommended links,
neutral for recommended links to previously visited pages, and bad for links that are not recommended.
The default color scheme in AHA! is blue, purple, black , which results in link hiding (for the non-
recommended links), but the color scheme can be changed either through a style sheet or through a form
that lets end-users change the color scheme.

The author interacts with AHA! in two ways: a conceptual way, through authoring tools, and a content-related way,
through any means the webserver offers for uploading data. We will concentrate on the authoring part that deals
with authoring the conceptual structure of an AHA! application. Regarding the content an AHA! application
consists of a directory tree, accessible through the website. As a result any facility the webserver offers for
manipulating publicly visible data can be used to manipulate the content of an AHA! application. The AHA! website
(http://aha.win.tue.nl/) contains an AHA! tutorial that includes the typical content elements.

• The starting point of every AHA! application is a login and/or registration page. This is an HTML page
with a form used to register new users or to let existing users log in. Logins can be anonymous or can use a
human-readable user identity (and name and password). The form also contains a number of hidden fields
to identify the name of the application, the root of the directory tree and the name of the first page to show.

• When logged in the access to the pages is redirected through the AHA! “get” servlet. This servlet performs
the content- and link adaptation. Apart from this the pages may look like a normal website. Links between
pages are normal links, and so are references to images or applets to include.

The adaptation in AHA! is based on concepts and adaptation rules. When the end-user clicks on a link the AHA!
engine consults a lookup-table to find the concept that corresponds to the requested resource. The adaptation rules
associated with the access attribute of that concept are triggered. The rules are event-condition-action rules. When a
rule is triggered a condition is checked. This is a Boolean expression using attributes of concepts. The attribute
values are stored in UM (the user model). If the expression is true then the associated action is performed. Actions
are updates to attribute values for concepts. Each time the attribute value of a concept is updated this triggers the
event-condition-action rules associated with that attribute of that concept. Rules thus trigger each other, together
performing perhaps complicated user model updates. The AHA! authoring tools warn an author for any danger of
the rules potentially triggering each other indefinitely. In the next section we describe the authoring tools through
which an author creates the concepts and adaptation rules, either directly (through the concept editor) or indirectly
(through the graph author).

The AHA! Authoring Tools

AHA! comes with two main authoring tools. For fast and easy authoring of the conceptual structure there is the
graph author, in which the author can use high-level concept relationships such as prerequisites. The tool generates
the event-condition-action rules for the AHA! DM/AM automatically. For specialists or for fine-tuning the
generated rules AHA! offers the concept editor (sometimes called generatelist editor). We first look at this low-level
tool as it teaches us the “real” structure of the AHA! authoring formats and it helps us explain the more advanced
aspects of the high-level graph author tool.

Page 2590

Figure 1a shows the main window of the
Concept Editor. Every concept has a
number of attributes (in this case “access”,
“knowledge”, “visited”, “suitability” and
“interest”). The “suitability” is shown as a
requirement that is used to determine
whether the concept is suitable or not.
For every attribute there are a number of
properties and a number of event-
condition-action rules. These are shown in
Figure 1b. The properties include
“Changeable” (meaning that the end-user
is allowed to change the value of the
attribute through a special form),
“Persistent” (meaning that the value is
permanently stored in the user model) and
“System” (meaning that the attribute has a
special meaning to the AHA! engine. This
is true for the “access” attribute which
triggers the rules and for the “visited”
attribute which is used to decide between
the good and neutral link colors. The
adaptation rules are triggered by an update
of the attribute value.
Figure 1c shows two additional aspects of
an attribute: the “stability” property, which
prevents a second adaptation when pages
are revisited, and the conditional object
inclusion, which we describe more in
detail with the graph author.
Figures 1d and 1e show the event-
condition-action rules in detail. Figure 1d
is associated with the access event. Its
condition says that the rule is only
executed when the tutorial’s welcome
concept’s suitability is false and when its
knowledge is low (below 35). If this
condition is met the knowledge of the
welcome concept is set to 35. So this rule
means that when visiting a non-
recommended concept the knowledge can
only increase, and will increase to 35.
The “Propagating” checkmark indicates
that when the rule is executed it triggers
the rules for the attributes (of concepts)
that are updated in the rule’s action. In this
case the tutorial.welcome.knowledge
attribute is updated, so this triggers the
rule shown in Figure 2e. That rule (not
shown completely) updates the knowledge
attribute of the tutorial concept. It adds
10% of the change to the welcome
concept’s knowledge value. (The “_”
symbol indicates change instead of value.
This rule thus shows how knowledge is
propagated up a concept hierarchy.

Figure 1a: Main Concept Editor window showing a concept.

Figure 1b: Concept Editor view of a single attribute.

Figure 1c: Concept Editor view of conditional object inclusion.

Figure 1d: Concept Editor view of event-condition-action rule.

Figure 1e: Concept Editor view of another rule.

Page 2591

The concept editor allows for complete control over the user model updates associated with the user’s browsing, and
thereby also over the adaptation that is based on these updates, on the “requirement” associated with each concept
and on the object inclusion. However, the example above also shows that defining an application’s adaptation
involves a lot of repetitive work. The rules for updating a concept’s knowledge (depending on its suitability) are
normally the same for all concepts. And the propagation of knowledge through a concept hierarchy is normally also
done in a uniform way. Likewise, the requirement for a concept (determining its suitability) is also likely to depend
on other concepts in a structured way, for implementing adaptation through prerequisites. There is thus a large part
of the authoring work that can be automated. The graph author is a tool, first introduced in (De Bra et al, 2002) that
lets authors “draw” the conceptual structure, and that generates the event-condition-action rules automatically.
 There is no magical tool that can automatically structure a textbook for you, let alone generate the
adaptation. A textbook normally consists of topics or concepts, that are grouped together to form a hierarchical
structure, typically of sections and chapters. When the textbook is presented through hypertext (or a website) there
is no restriction that every topic can belong to only one section or chapter. The navigational freedom a hypertext
textbook gives to end-users is the main cause for learners to encounter difficulties. They can easily browse to an
advanced topic before studying more basic definitions. By using prerequisites for adaptive link annotation or hiding
users can be warned not to go to pages they are not ready to study. Alternatively, conditional object inclusion can be
used to provide some additional explanations to compensate for missing knowledge.
Figure 2a shows the main graph author
window. On the left we see the
concept hierarchy. Knowledge
propagation according to the concept
hierarchy is generated automatically.
On the right we see a graph of concept
relationships. Concepts are simply
dragged from the hierarchy frame to
the graph. The relationships are
created by selecting a relationship type
(top right in the window) and then
drawing an arrow from source to
destination. By clicking on the arrow a
parameter entry box appears. In the
example we see red dashed arrows
representing prerequisite relationships,
and green solid arrows representing a
“menu” relationship type we invented
to make a menu-style navigation aid
work in the tutorial. The menu arrows
have a label representing the parameter
(added as described above).
When adding a new concept the dialog
box shown in Figure 2b lets you select
between different templates. These
predefine which attributes the concept
has, and whether a resource (page)
must or can be associated with the
concept. Other parameters are the
same as with the concept editor.
Figure 2c shows the conditional object
inclusion dialog box. A conditionally
included object always refers to a
concept (not to a resource or file). The
dialog box lets you enter an expression
(just like the “requirement” or the
“condition” of adaptation rules) that
determines under which circumstances
a resource is included. The first clause

Figure 2a: Main Graph Author window.

Figure 2b: Creating a new concept.

Page 2592

that matches is included, so the
conditions for different resources may
overlap.
The graph author is a generic tool. Its
functionality is largely determined by
available templates: there are
templates for concepts (defining the
attributes and unary concept
relationships like updating the
knowledge upon access), and there are
templates for concept relationships,
defining how instances of the
relationships are translated into the
event-condition-action rules used by
the AHA! engine. Because of lack of
space we cannot describe the templates
in detail in this paper.

Figure 2c: Conditional object inclusion.

Additional Features and Tools

AHA! offers a few special function that are typically used in adaptive textbooks (and less in other applications).
They can be called upon from a header or footer file.

Figure 3: Header of the AHA! tutorial.

Figure 3 shows typical items of a header file. Information that is shown is generated through a <variable> tag, and
links to special forms or reports through a <handler> tag.

• <username> generates the user’s name (Paul De Bra in the example), and thus allows to give an AHA!
application to have a “personal” flavor.

• <email> generates the user’s email address.
• <numberdone> generates the number of pages the user has read, at least according to the visited attribute in

the user model. (This may or may not correspond to reading pages, depending on the adaptation rules.)
• <numbertodo> generates the number of pages the user still has to read, again according to visited.
• <todo> generates the list of pages still to be read (according to visited).
• <done> generates the list of pages that have been read (according to visited).
• <colorsettings> lets the end-user change the good-neutral-bad color scheme through a form.
• <knowledgesettings> lets the end-user change the knowledge value for concepts through a form. Only

concept with a “changeable” knowledge attribute are included in this form.
• <passwordsettings> presents a form for changing the user’s password. (For anonymous users a password

cannot be entered.)
• <logoff> ends the session, thus preventing others from continuing a session if the browser is left active

when the user leaves the computer.
Apart from these standard features AHA! offers two special kinds of forms: multiple-choice tests and custom forms.
Multiple-choice tests in AHA! consist of a number of questions that can have two forms: with a single and with
multiple correct answers. You can provide more answers than are presented to the learner. The learner can get just a
score or a more elaborate feedback. An authoring tool for multiple-choice tests has recently been developed by
Cristobal Romero from the University of Cordoba (Spain), and will be added to the AHA! distribution.
 AHA! also offers the possibility for creating custom forms. These let you offer the end-user the possibility
to change values for arbitrary (changeable) attributes of concepts.

Page 2593

The form editor, shown in Figure
4, consists of a standard HTML
editor frame, coupled with a user
interface for adding form elements
that are tied to attributes of
concepts. Forms, created with the
form editor, are useful for entering
preferences, interests, background
knowledge, etc. Some care has to
be taken when using the form
editor that the generated file is
acceptable for an XML parser. In
the current version of the J2SE that
is used the included editor is not
yet fully XHTML compliant.

Figure 4: The AHA! Form Editor.

Conclusions

In this paper we have provided an overview of AHA!, thereby concentrating on the authoring tools that are available
for creating the conceptual structure of an adaptive textbook. In the interactive roundtable session we will walk
through the creation of an adaptive textbook (for which the content pre-exists). The aim is to not only show the
authoring process but also to answer questions and to gather ideas for new authoring tools.

References

Brusilovsky, P. (1996). Methods and Techniques of Adaptive Hypermedia. User Modeling and User-Adapted
Interaction, 6, (pp. 87-129). (Reprinted in Adaptive Hypertext and Hypermedia, Kluwer Academic Publishers, 1998,
pp. 1-43.)
Brusilovsky, P. (2001). Adaptive hypermedia. User Modeling and User Adapted Interaction, 11 (1/2) pp. 87-110.
Brusilovsky, P., Eklund, J., Schwarz, E. (1998). Web-based Education for All: A Tool for Developing Adaptive
Courseware. Computer Networks and ISDN Systems (Seventh International World Wide Web Conference), 30, 1-7,
291-300.
Cini, A., Valdeni de Lima, J. (2002). Adaptivity Conditions Evaluation for the User of Hypermedia Presentations
Built with AHA!. Second International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems,
Springer Verlag, LNCS 2347, pp. 490-493.
Cristea, A., de Mooij, A. (2003). Adaptive Course Authoring: My Online Teacher. ICT’03 (International Conference
on Telecommunications), Papeete, French Polynesia, IEEE,IEE, ISBN: 0-7803-7662-5, pp. 1762-1769.
De Bra, P., Aerts, A., Rousseau, B. (2002). Concept Relationship Types for AHA! 2.0 . Proceedings of the AACE
ELearn'2002 conference, October 2002, pp. 1386-1389.

De Bra, P., Aerts, A., Berden, B., De Lange, B. (2003a) Escape from the Tyranny of the Textbook: Adaptive Object
Inclusion in AHA!. Proceedings of the AACE ELearn 2003 Conference, Phoenix, Arizona, November 2003, pp. 65-
71.

De Bra, P., Santic, T., Brusilovsky, P. (2003b). AHA! meets Interbook, and more... Proceedings of the AACE
ELearn 2003 Conference, Phoenix, Arizona, November 2003, pp. 57-64.
Romero, C., De Bra, P., Ventura, S., de Castro, C. (2002). Using Knowledge Levels with AHA! for Discovering
Interesting Relationships. Proceedings of the AACE ELearn’2002 Conference.
Romero, C., Ventura, S., De Bra, P., De Castro, C. (2003). Discovering Prediction Rules in AHA! Courses.
Proceedings of the User Modeling Conference, Johnstown, Pennsylvania, June 2003, pp. 35-44.

