An Authoring Tool for Web-Based Adaptive and Classic Tests

Cristébal Romero®, Santiago Martin-Pdomo®, Paul De Bra?, Sebastian Ventura®

'Departament of Computer Science, University of “Department of Computer Science, Eindhoven
Cordoba. 14071 Campus de Rabanales, University of Technology (TU/e) PO Box 513,
Cordoba, Espafia. Eindhoven, The Netherlands.
{ cromero,i02pagas,sventura} @uco.es debra@win.tue.nl

Abstract: Inthispaper wedescribe Test Editor, an authoringtool for building adaptive andclassic
web-based test. This tool facilitates the development and maintenance of different types of

multiple-choicetestsfor useinweb-based education systems. Test Editor isamodular tool which
lets you configure several parameters about items and tests. It also provides statistical

information about tests usage that can be used in test maintenance. We have integrated the Test
Editor with the AHA! system, but it can be used in other web-based systems as well.

Introduction

Tests or quizzes are among he most widely used and well-developed tools in higher education
(Brusilovsky, 1999). There are different types of test, depending on the type of questions (yes/no questions,
multiple-choice/single-answer questions, fill-in questions, etc.) and there are two types of control algorithrs:
adaptiveand classic. A classic test is a sequence of simple questions. Each question can be evaluated as correct,
incorrect or incomplete. Normally the same questions are shown to all examineesand thefinal score dependson the
number of correct answers. An adaptive test (Arroyo, 2001) is a computer-based test where the decision of
presenting aquestion or item and the decision to finish the test are dynamically made depending on the examinee’s
performance in previous answers. The main advantage of adaptive tests is that each examinee usually receives
different questions and their number isusually smaller thanthe number of questions needed inaclassic test.

Inorder tofacilitatetest creation and maintenance, we have devel oped an authoring tool for building both
adaptiveand classic web-based tests. Currently, we haveintegrated it inthe AHA! system (De Bra, 2003) because
it is awell-known adaptive hypermedia architecture used to build web-based courses, and because it uses an
XML-based markup language. The specific life cycle of tests we have used is shown in Figure 1.

Concepts to | tems File | TestFie _ Test

- 3 - v - : »1 Maintenance
evaluate creation creation Execution

A

Figurel: Lifecycleof tests.

Thefirst step is to specify what the conceptsare we want to evaluate. In AHA! for example we can use
Graph Editor or theConcept Editor (DeBra, 2003) to create these concepts. The second step isto build items of the
test. Each item is one question about one concept and its parameters (question, answers, explanation, etc.). The
third step isto build tests out of items. Tests consist of anumber of items and configuration parameters (the type
of test, number of questions, etc.). Then tests are published andthen performed by examinees usingatest execution
engine. Inafinal step, testsand items can be modified by the examiner based on the examinees usage information.
The Test Editor tool does some preparatory steps:. item creation, test creation and item and test maintenance (see
Figure 1 with underlined square). Next, we are going to describe each step.

Theitemsfilecreationisthefirst step in which examiner creates items and their parameters. Because each
itemis associated with one concept, theauthor hasto select which AHA! concept is associated with thisitemsfile.

Page 174

Then, he adds questions to the file, one by one (see Figure 2), setting some obligatory parameters (the enunciate
flag, answers and a flag to indicate whether the answers are correct) and other optional parameters (image,
explanation and Item Response Theory (IRT) parameters (Wainers, 2000): item difficulty, discrimination and
guessing). Items are stored in XML files and more items can be added, and the existed ones can be modified or
deleted.

& Test Fditor
Cusstions Test Tests Mankerarce Help

DQR 2w A4

* Add Quastion To File. Comrse: mvn - Omastions Fie: Hilns-1_fava_items

Iwsge (Dot nal)

Apeaser | Dhdiat nryh;

|Wntz Pire the BMSWEr.
3 Tum

) Faken

Expl anzstion {Oginnalic
I\'-"ﬂlf-' rere tre gxpianaton.

Ajensale 2

Dercasnr | it ory):

|'-'lntE here thea arswer.

(5 Tm - (T Faka

Exipl arsation (Optional:
I\'-l'r'll:e rere (e expranation.

| ﬁsm-mm: | Bsm || ofmud || L) Ces H éﬁddﬁmﬂﬁ

e 2 Expornco,, = | B Start Tomeat | Tuat Eclbor - 5, T [Jane Parthi

Figure 2: Interfaces of Items file creation.

Duringthet est file creationthe examiner can configure tests by adding items and setting test parameters.

Firsthe hasto decide what test type (classic test or adaptivetest) he wants and whether to use one or several items
files. If thetest evaluatesonly one concept, we can also consider it to be an “activity”. If the test eval uates several

concepts, it will bean”exant about one chapter or awhole course. Next, the examiner can use different methods to
select what specific items from these items files will be used in the test (the selection can be done manually,

randomly or randomly with some restrictions). Then he sets parameters (see Figure 3) about how questions are
shown to examinees (the order in questions and answers are shown, to show or hide explanations of the answers
(through the “verbose” flag), the maximum time to respond, whether show the correct answer or just ascore, etc.)

and parameters about eval uation (to penalize incorrect answers, to penalize questions without an answer and what
percentage of knowledge the final score represents in the associated concept/concepts).

Page 175

& Test Fditor
Questions Test Tests Mainbensnce Help

LOQ Aw dad

& Creatinn of classic test

) Freentation Pawmet=is |G‘_EMM [ER—
rParameters for the show of the questions
Crder of the questions:

I indicauee Lhe ey in which
e g o will b shoven in fhi tast.

“ Randem [Segquarntial

Qrder of the answers:
W inlicates e way in vihich
thie: ns wars will B Shou e test,

[Seqquantial

it imicabes & ihe explanation of the answers
il e shin vl thiey ana correcied,

ves 5 Ne

Show Corraction:
K imdicates if the evalusation of
HHiee e v ar e squestiom will lie shaesn,

ves D Ne

-

[Maximum time to respond to the questions % e | 0| (Beconds)
M0 A0 A0 A0 RO BOO

r@pmm ||T®mm | I_"}cm | |] G |

[F: AHSTRAC,, & 2 Ecdmodo,, + | EH Tt Tonrn, D Tk Editer - .,

: v Jam Park S
Figure 3: Interfaces of Test file creation.

Findly if the test is adaptive, he has to set also the adaptive algorithm parameters (questions selection
procedureand termination criterion). Eachtestisstoredin an XML filethat isprepared to be used by testsexecution
engine. Inthe Figure 4, we show an example of test execution inside the AHA! tutorial.

After a large number of examinees performed tests, examiners can do maintenance by carrying out
modification in items and tests files. In order to facilitate this task, the Test Editor shows statistical information
about examinees' usage (questions success percentage, mean times to answer the questions, questions usage
percentage, etc.) to hel p examinersin making decisions. The examiner usually decidesto modify or delete bad items,
and to add new items. But he can also modify the test configuration and he can even allow certain examinees to
repeat certain tests, or to allow or deny accessto certain tests.

Conclusions

The Test Editor isatool for the development and maintenance of different types of web-based test. The
main advantages of Test Editor are: modular (separate concepts, items and tests), easy to use (Java Swing graphic
user interface); it facilitates the maintenance (based on examinees’ usage information) and uses a standard format
(xml files). Although we have created it within the AHA! system, it can be used in other web-based educational

systems. Theonly requirement isthat thetest execution engine can read and show the XML testsfiles as produced
by the Test Editor.

Page 176

T Hzaila =181
- dnhie Edir e F Hwoedoer Heeaenges Yot Apds
" Q: a 0 Q I it Tocahost BOBGiFal e T s il bind O] e | "‘-—:‘ga
o Wi Dlvivcadonss ' dpache Tonea,

'] 5 i | []
oy Test Tutorial

b est Tutoria

metallzhion

mmusers

authoring

desigmers Question 1

cominkastng be AFLA

PR P W EXHNE

r\h:r bype of adapiaon ries doss SHAI use? H
-AIEWETS:
o r\il - G0N BL0DN Mubes H
i rcrcr_cr-a:u:n = ﬁ
‘) B ot J B et arewers @Eﬂtru | oewhﬂ ”
Dawe -';ﬁ

0 T B [0 &1 tdrrrrs vt st =] |
(S et

Figure4: Example of test executioninside AHA!.

References
Wainer, H. (2000) Computerized Adaptive Testing: A premier. New Jersey: Lawrence Erlbaum Associates.

DeBra, P., Aerts, A., Berden, B., De Lange, B., Rousseau, B., Santic, T., Smits, D., Stash, N. (2003) The Adaptive
Hypermedia Architecture. Proceedings of the ACM Hypertext Conference (pp.81-84). Notttingham: UK.

Brusilovsky, P. Miller, P. (1999) Web-based Testing for Distance Education. Proceeding of World Conference of
WWW and Internet (pp. 149-154). Honolulu:HI.

Arroyo, I. Congjo, R. Guzman, E. Wolf, B.P. (2001). An Adaptive Web-based Component for Cognitive Ability
Estimation. Proceedings of Artificial Intelligence in Education (pp. 456-466). Amsterdam:| OS.

Page 177

