Information Processing Letters 17 (1983) 91-95
North-Holland

24 August 1983

AN ALGORITHM FOR HORIZONTAL DECOMPOSITIONS

Paul De BRA and Jan PAREDAENS

Department of Mathematics, University of Antwerp, B-2610 Wilrijk, Belgium

Communicated by W.L. Van der Poel
Received June 1982

Keywords: Relational Database Model, functional dependencies, horizontal decompositions, inherited dependencies, normal

forms

Introduction

In the study of the Relational Database Model,
the vertical decomposition of relations into projec-
tions of these relations has been emphasized ever
since its introduction in [3]. The presence (in the
‘real world’) of a constraint, e.g., a functional
dependency, is indispensable for the use of vertical
decompositions.

However, in many applications it is necessary
to allow violation of the desired constraints. In
this paper an ‘exception handling mechanism’ is
described which is based on the horizontal decom-
position of a relation into restrictions of this rela-
tion, using the union as composition operator. By
separating the ‘exceptions’ from the main part of
the relation, the desired functional dependency is
preserved in this main part. Hence, vertical de-
composition of (part of) the relation becomes pos-
sible after performing the horizontal decomposi-
tion.

To illustrate the use of horizontal decomposi-
tions consider a (small part of a) database PARK-
ING (E, PB, C), representing Employees hiring
Parking Boxes for their Car(s). Most employees
only have one car and only hire one parking box.
This, however, is not a constraint that might be
used for any optimization of the database. The
horizontal decomposition, described below, selects
a (large) subrelation in which every employee only
has one car and only hires one box. The latter

0020-0190,/83 /$3.00 © 1983, Elsevier Science Publishers B.V. (North-Holland)

constraint (a functional dependency) is very useful
for optimizing the database structure.

1. The relational model

In Codd’s relational database model [3,7], a
relation instance is a table in which each column
corresponds to a distinct attribute, and each row
(i.e., tuple) to a distinct entity. For each attribute
there is a set of possible values, called the domain
of that attribute.

The relation instance (the set of tuples) changes
with time, whereas its structure is static. This
structure, the name of the relation, its attributes,
its domains and the constraints that must be satis-
fied in every instance (i.e., at any time), is called
the (relation) scheme.

Let X and Y be sets of attributes. The functional
dependency (fd) X — Y means that (in every in-
stance) iff two tuples s and t have the same value
on X (s{X]=t[X]), then they also have the same
value on Y (s[Y]= t[Y]).

2. Horizontal decompositions

A set of tuples S, in an instance, is called
X-complete iff the tuples not belonging to S all

n 91

Volume 17, Number 2

have other X-values than those belonging to S.

Let X, Y be sets of attributes. The horizontal
decomposition of an instance R, according to the
goal (X, Y) is the couple of (sub)instances (R, R,),
where R, is the largest X-complete set of tuples (of
R) in which the fd X — Y holds, and R, =R — R,
(the exceptions to X = Y).

In R, the so-called afunctional dependency (ad)
X # Y holds, which means that in every nonempty
X-complete set of tuples the fd X —Y does not
hold.

Let R.(4, @) be a relation scheme, with set of
fd’s § and set of ad’s &. The horizontal decomposi-
tion of % according to (X, Y) is

(R, (JUX->Y)HLR), R, (5 QUX #Y))),

where @ is a subset of @, of which the calculation
is described in Section 4.

Recall the PARKING example of the Introduc-
tion. The presence of the ‘almost functional de-
pendencies’ suggests the use of the goals (E, PB)
and (E, C) for horizontal decomposition. (E, PB)
results in

PARKING, ({E — PB}, 0),
and
PARKING, (0, (E # PB}).

Decomposing the subschemes further on, using
(E, C) gives

PARKING,({E = PB, E - C}, 0),
PARKING |, ({E = PB}, {(E # C}),
PARKING,, ({E — C}, {E # PB})
and

PARKING,, (0, {E # PB, E # C}).

Consider the following instance of PARKING:

PARKING = E PB C
Jones 1 FIAT 500
Smith 2 RABBIT
Harvey 3 ESCORT
Harvey 3 GRANADA
Johnson 4 SILVERGHOST
Johnson 5 MERCEDES 600

92

INFORMATION PROCESSING LETTERS

24 August 1983

After the decomposition we have the instances:

PARKING;; = E PB C
Jones 1 FIAT 500
Smith 2 RABBIT
PARKING , = E PB C
Harvey 3 ESCORT
Harvey 3 GRANADA
PARKING,; =
PARKING,, = E PB C

SILVERGHOST
MERCEDES 600

Johnson 4
Johnson 5

For obvious reasons we have left PARKING,,
empty. To express that this relation should be
empty, i.e., that an employee who only owns one
car may only hire one parking box, a new con-
straint would be necessary [5], which is not dis-
cussed in this paper.

3. A membership algorithm

For fd’s a number of membership algorithms
can be found in the literature [1,2]. It is very easy
to prove that the presence of ad’s does not affect
the membership of fd’s.

Some sets of fd’s and ad’s $U@ cannot be
satisfied in a nonempty instance, for instance if

$={A->B,B>C} and @={A#C).

They are said to be in conflict. The set of depen-
dencies, associated with a database scheme must
never be in conflict. To verify whether U & is in
conflict one may use the following algorithm, which
relies on [4, Theorem 4.1].

Algorithm 3.1. Conflict detection

Input : A set § of fd’s and a set & of ad’s.
Ourpur : $U @ is in conflict or not.
Method:
begin
for each T# U@ do

Volume 17, Number 2

if $=T - U {ie, if T— U is a consequence
of §. This can be verified using
an algorithm of [1,2]}.
then return “YU & is in conflict”; {and
stop)
return “4 U & is not in conflict”
end.

The above algorithm reduces the detection of
conflict to the membership problem for fd’s. Using
Algorithm 3.1 also the membership problem for
(fd’s and) ad’s can be reduced to that of fd’s.

Algorithm 3.2. Membership of (fd’s and) ad’s

Input : A set § of fd’s, a set & of ad’s and an ad
X# Y. $UE® is assumed not to be in
conflict.

Output : $ULEX#HY ortUREXH Y.

Method :

begin
it $U (X - Y)Ud is in conflict
then return “SUEEX#+Y”
else return “YU R EX #HY”
end.

Proof. If §U&=X+#Y, then UK=Y} U&
clearly is in conflict.

Conversely, let $U{X = Y}U& be in conflict
(but JU@ not in conflict). Then Algorithm 3.1
finds an ad T# U< & for which $U{X > Y) =
T— U. We prove that §U{T # Uy X # Y.

Let, for each set of attributes P,

P = {attribute A| § = P — A},

and let Q2 be the set of all attributes. Suppose
$U{T # Uy X 4 Y. There are two possible
cases:

Case 1. X ¢ T. Consider the following instance

R:

T Q-T
0 ... 0 0 --- 0
o -+ 0 1 - 1

In R, ¢ holds because of the definition of T;
X — Y holds since X ¢ T, and T # U holds since
U ¢ T (otherwise $U @ would have been in con-

INFORMATION PROCESSING LETTERS

24 August 1983

flict). Hence $U{X > Y} T - U, a contradic-
tion.

Case 2. X CT. It is easy to see that U¢YT
because T 4 U, TY —» U and T — X would induce
X #Y, a contradiction. Consider the following
instance R:

e)
(=B]
- O
- O

In R, § holds because of the definition of YT,
X — Y holds since Y YT, and T #> U holds since
U ¢ YT. Hence $U {X = Y}k T — U, a contradic-
tion.

The fact that if $U (T # U= X # Y, then also
§U@E X # Y completes the proof. O

4. The inheritance of dependencies

When performing a decomposition of a relation
scheme, the question arises which dependencies
hold in the subschemes. These dependencies are
said to be inherited by the subschemes.

For the vertical decomposition the inheritance
problem is quite trivial, but it may involve the
calculation of all consequences of the given de-
pendencies [1]. The inheritance of ad’s, for the
horizontal decomposition, is not trivial. Consider
the following instance:

R: A B C
0 0 O
0 1 0
1 0 1
1 1 1
1 0 0

In R, A # B and B # C hold. Let R be decom-
posed according to (A, C):

R: A B C

0 0 0
0 1 0
R, A B C
1 0 1
111
1 0 0

93

Volume 17, Number 2

R, and R, did inherit A # B but not B # C.

To determine which dependencies are inherited
by the subschemes one can use the following algo-
rithm.

Algorithm 4.1. Decomposition according to a goal

Inpur : A scheme ®.(94, &) and a goal (X, Y).
§U @ is assumed not to be in conflict,
frX->Yand JUEEX Y.

Output : A couple of schemes
(R (9, @), R,(9,, €,)), being the de-
composition of 4} according to (X, Y).

Method.:
var @:set of ad’s :=§,
begin
for each T #> U € @ do
ifI=ET =X

then @ := A U(T + U};
return (R,(§U (X = Y), A),
R (5, QUK YY)
end.

This algorithm relies on [4, Theorems 5.3 and
5.11]. Note that the consequences of U & need
not be calculated in order to obtain a generating
set of dependencies for the subschemes.

5. The decomposition algorithm

From now on we let a relation scheme ¢ have a
set § of goals, as well as a set § of fd’s, and @ of
ad’s. When decomposing R according to (X, Y) €6
into (R (4,,&,,6)), R,(9%,4,,5,)) we assume
that for no goal (T, U) of § holds

fET->U or §URETH» U,

and we let

g={T,U)es|4 ¥ T->Uand U@, # T U},
i=1,2.

The goals of 8, (i = 1, 2) are said to be inherited by
...

A relation scheme &.(4, &, §) is said to be in
the Inherited Normal Form (INF) iff § =0 or, for
al (X, Y)e8, $=T—>Uor fU@ET # U holds.
A decomposition (R ,,..., R) is in INF iff all the
%R, (1 <i<n) are in INF.

94

INFORMATION PROCESSING LETTERS

24 August 1983

Algorithm 5.1. Decomposition into INF

Input : A scheme R.(%, @, §).
Output : If $U @ is not in conflict, a decomposi-
tion of 4R that is in INF.
Method:
if $U @ is in conflict
then return an error message
else delete all goals (X, Y) from § for which
fEX>YordUQEX#Y,;
decompose R.(9, @, ¢ {after deletion)) using the
procedure:

procedure decompose (%R.:name, $:set of fd’s,
@:set of ad’s, 9: set of goals)
begin
ifG=0
then & is its own decomposition
else decompose (R, §U{X - Y}, @, 8
decompose (R.,, §, UX = Y}, 8,);
the decomposition of &R is
(the decomposition of R, the decom-
position of &)
end,

Since §,, 6, always contain at least one goal less
than §, Algorithm 5.1 stops after a finite time.
From the definition of INF it is obvious that the
final decomposition, produced by the algorithm, is
in INF.

6. Example

Consider the following relation:

sTafr(E, J, S, M)

§ = (EJ - SM)

@= (M # EJ)

G ={(E, J); (J, M), (E, M)}

A tuple (e, j, s, m) of an instance of STAFF means
that employee e works on a job j, for which he
(she) earns (only) one salary s and has (only) one
manager m.

The ad M # EJ means that a manager must
supervise more than one employee or job.

The fd’s E—J, J - M and E — M do not hold.
However, it is likely that most employees only

Volume 17, Number 2

STATFF
EI—+SM, MAEI
(E,7},(J, M), (E, M)

INFORMATION PROCESSING LETTERS

24 August 1983

~a
STAFFy STAFFy
EJ—+8M,E—J EJ-SM,E4]
(1, M) (1, M), (E, M}
STAFF;; STAFF;» STAFFg; STAFFgy
EI-SM,E—J EJ—~SM,E—J EJSM,EAJ BI-8M, 15440
oM IAM JM, (E,M) IAM, EM)
STAFFg11 STAFFg12 STAFF gg1 STAFFo02
EJ-SM,EAT EJ—SM,E4A7T EJ—SM, EA7T EJ—5M,E4T
J—+M,E—M JoM, EAM JAM, E—-M JAM, EAM
Fig. 1.

have one job, most jobs are supervised by only one
manager, and hence most employees only have one
manager. Using (E,J), (J, M) and (E, M) for
horizontal decomposition leads to 6 subschemes,
as is illustrated by the ‘decomposition tree’ of Fig.
1. The assumption about most employees and jobs
means that the instances of STAFF,; will be consid-
erably larger than the other subrelations. STAFF,,,
and STAFF,,, should have the smallest instances.

From Fig. 1 one can easily see that the horizon-
tal decomposition into INF preserves fd’s but not
all ad’s. In [6] a dependency preserving decom-
position algorithm is described. The algorithm of
[6], however, does not always produce a subscheme
(like STAFF,;) in which for all goals (X, Y) of & the
fd X = Y holds.

7. Conclusion

We introduced an algorithm for the horizontal
decomposition of a Relation which provides a
mechanism for handling exceptions to functional
dependencies.

This decomposition is ‘functional dependency
preserving’, hence the traditional vertical decom-
position can be used after the horizontal decom-
position.

References

[1] C. Beeri and P.A. Bernstein, Computational problems re-
lated to the design of Normal Form relation schemes, ACM
TODS 4(1) (1979) 30-59.

[2] P.A. Bernstein, Normalization and functional dependencies
in the relational database model, CSRG-60 (1975).

[3] E. Codd, Further normalizations of the database relational
model, in: R. Rustin, ed., Data Base Systems (Prentice-Hall,
Englewood Cliffs, NJ, 1972) pp. 33-64.

[4] P. De Bra and J. Paredaens, The membership and the
inheritance of functional and afunctional dependencies,
Rept. 81-39, Dept. of Math., Univ. of Antwerp, Belgium,
1981.

[5] P. De Bra, Conditional dependencies, Thesis, Dept. of
Math., Univ. of Antwerp, Belgium, 1981.

[6] J. Paredaens and P. De Bra, On horizontal decompositions,
XP2-Congress, State Univ. of Pennsylvania, 1981.

[7] J. Ullman, Principles of Data Base Systems (Pitman,
London, 1980).

95

