
Authoring of Learning Styles in Adaptive Hypermedia:
Problems and Solutions

Natalia Stash
Faculty of Computer Science and

Mathematics
Eindhoven University of Technology
Postbus 513, 5600 MB Eindhoven,

The Netherlands
+31-40-247 3874

nstach@win.tue.nl

Alexandra Cristea
Faculty of Computer Science and

Mathematics
Eindhoven University of Technology
Postbus 513, 5600 MB Eindhoven,

The Netherlands
+31-40-247 4350

a.i.cristea@tue.nl

Paul De Bra
Faculty of Computer Science and

Mathematics
Eindhoven University of Technology
Postbus 513, 5600 MB Eindhoven,

The Netherlands
+31-40-247 2733

debra@win.tue.nl

ABSTRACT
Learning styles, as well as the best ways of responding with
corresponding instructional strategies, have been intensively
studied in the classical educational (classroom) setting. There is
much less research of application of learning styles in the new
educational space, created by the Web. Moreover, authoring
applications are scarce, and they do not provide explicit choices
and creation of instructional strategies for specific learning styles.
The main objective of the research described in this paper is to
provide the authors with a tool which will allow them to
incorporate different learning styles in their adaptive educational
hypermedia applications. In this way, we are creating a
semantically significant interface between classical learning styles
and instructional strategies and the modern field of adaptive
educational hypermedia.

Categories and Subject Descriptors
H.1 [Information Systems] Models and Principles; I.2.4
[Artificial Intelligence]: Knowledge Representation Formalisms
and Methods; H.5.4 [Information Interfaces and Presentation]:
Hypertext/Hypermedia - architectures, navigation, theory, user
issues; E.1 [Data]: Data Structures - distributed data structures,
graphs and networks; K.3.1 [Computers and Education]:
Computer Uses in Education - distance learning.

General Terms
Design, Experimentation, Human Factors, Standardization,
Theory.

Keywords
Learning styles, user modeling, adaptive hypermedia, authoring of
adaptive hypermedia.

1. INTRODUCTION
Adaptive hypermedia tries to deal with the fact that the users are
individuals. Most adaptive educational systems take into account
learner features like goals/tasks, knowledge, background,
hyperspace experience, preferences and interests [4].

However, less attention has been paid in adaptive hypermedia to
the fact that people have different approaches to learning, namely
that the individuals perceive and process information in very
different ways. Recent researches [2][15][18][22] are trying to
alleviate this and integrate learning styles in the design of their
adaptive applications. Nevertheless, this is not an easy process.
One of the difficulties in designing hypermedia software that
incorporates learning styles is their actual representation in such
an environment. The literature reveals that there have been very
few studies, which have set out specifically to investigate the
relationship between learning styles and hypermedia applications,
especially adaptive versions.

From our point of view it is more interesting to let authors decide
themselves which is the most appropriate learning style for their
learner, and either select this particular learning style, or create it
from scratch. Therefore, we don’t advocate one particular learning
style or another, but we are trying to create enough flexibility to
make it possible for authors to design as many variations of
learning styles as they like.

The remainder of this paper is structured as follows. In section 2
we describe background research and show what – to our
knowledge - has been done so far in the direction of connecting
adaptive hypermedia with learning styles. Section 3 is dedicated
to study the different aspects of incorporating learning styles in
AHA!, a mature adaptive hypermedia architecture [1][12]. Section
4 describes how the same and similar learning styles can be
defined in MOT, an authoring tool for adaptive hypermedia [19].
Section 5 shows how the connection between MOT and AHA!
can be made, via specific transformations. Finally, section 6
discusses the benefits and original points of our research and
draws some conclusions.

2. POSSIBLE ADAPTATION TO
LEARNING STYLES IN HYPERMEDIA
ENVIRONMENTS
Currently several systems providing adaptation to users’ learning
styles have been created [11] [26] [25] [24] [20]. Most of the
adaptive educational systems which incorporate learning styles are
based on the notion that matching the learning strategies with the
learning styles improves learners’ performance. Table 1 presents
some of the existing systems and the learning styles they
implement.

Copyright is held by the author/owner(s).
WWW 2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

114

Table 1. Learning styles incorporated into adaptive systems

System Learning style
ARTHUR [15]

visual-interactive, auditory-lecture and text
styles

iWeaver [26]

auditory, visual, kinaesthetic, impulsive,
reflective, global, analytical styles of Dunn
and Dunn learning style model [13]

CS388 [6]

Felder-Silverman learning styles model [14]
- global-sequential, visual-verbal, sensing-
intuitive, inductive-deductive styles

AEC-ES [25] field-dependent (FD) and field-independent
(FI) style

LSAS [2]

global-sequential dimension of the Felder
Silverman learning styles model

MANIC [24]

applies preferences for graphic versus textual
information

INSPIRE [22]

Honey and Mumford [16] categorization of
activists, pragmatists, reflectors and theorists
based on Kolb [17]

Tangow [20]

sensing-intuitive dimension from the Felder-
Silverman learning style model

Briefly, the kinds of adaptation provided by the systems are as
follows.
In ARTHUR, iWeaver, CS388 and MANIC the adaptation is
achieved by providing different media representations for each
learner. ARTHUR and iWeaver are very similar in choice of
learning style representation. Auditory representation is achieved
using sounds and streaming audio. To appeal to visual and
kinesthetic learners puzzles, animations, drag and drop examples
and riddles are used. CS388 uses different types of media such as
graphs, movies, text, slideshows. Similarly, MANIC uses graphic
and textual information.
AEC-ES provides field-dependent learners with navigational
support tools, such as concept map, graphic path indicator,
advanced organizer, in order to help them organize the structure
of the knowledge domain. The system guides them through the
learning material via adaptive navigation support. Field-
independent learners are provided with a learner control option -
for them, the system shows a menu from which they can proceed
with the course in any order. Learners can switch between
different instructional strategies (designed for FD and FI learners).
In LSAS (Learning Styles Adaptive System) the sequential
learners are provided with advanced organizers, maximum
instruction and feedback, and more structured lessons.
Symmetrically, global learners are guided via overviews and
summaries of lessons. In the more recent Tangow and INSPIRE
systems, adaptation lies in presenting a different sequence of
alternative contents of the concepts. Concepts can be represented
by ‘example’, ‘activity’, ‘theory’, ‘exercise’ in INSPIRE and by
‘example’, ‘exposition’ in Tangow. For example, for Reflectors in
INSPIRE and Sensing users in Tangow the instructional strategy
is example-oriented, meaning that the learners are presented with
the example first and only afterwards with the other
representations of the concept.

INSPIRE, as well as LSAS and AEC-ES, uses adaptive
navigational support techniques with link annotation.

This review shows that different systems provide adaptation to
learning styles in terms of content adaptation, navigation paths or
usage of multiple navigational tools. However the choice of
learning styles seems to be limited based on the suitable
technology. Also, most of the presented systems, except iWeaver
and MANIC, assess the learning styles through psychometric
questionnaires. The disadvantage of this approach is that the
learners are classified into stereotypical groups and the
assumptions about their learning styles are not updated during the
following interaction with the system. In the following we show
how we try to avoid some of these limitations in AHA! and MOT.
Moreover, in this paper, we are looking, beside some classical
approaches, also at some learning styles that are less treated in the
literature, mainly because their representation and interpretation is
considered more difficult, such as the learning styles proposed by
Kolb [17] and extended by Honey and Mumford [16] as depicted
in Figure 1. These styles will be discussed in more details when
trying to implement them in AHA! and MOT respectively.

In the follo
implementation

3. HOW T
USERS LE
3.1 Selecte
The review of e
to a selected le
to learning st
presentations o
activity or ima
video). In all t
learner from
preferences an
application. Th
the aspects of
realized by usin
and its represen
the following
defining the ‘il
‘Graph Author
typical relatio
prerequisites o
‘Graph Author
which they wan
will be automa
used by the AH
AHA! does not
that will provi
authors of the
flexibility in ch
instructional str

converger

diverger assimilator

accomodator

abstract concrete

active

reflective

115
Figure 1. Kolb learning styles.
wing, we describe various learning style
 in AHA! and MOT.

O PERFORM ADAPTATION TO
ARNING STYLES IN AHA!
d Learning Styles for AHA!
xisting systems shows that they provide adaptation
arning or cognitive style. In many cases adaptation
yles assumes providing learners with different
f the learning material (example, theory, exercise,
ge vs. text), by different type of media (audio,

hese cases the concept should be presented to the
various perspectives depending on his/her

d on the progress while working with the
erefore, in these cases, the main issue is presenting
a concept in different order. In AHA! this can be
g the similarity of relationships between a concept
tations (which can be also defined as concepts). In
subsection we show how this can be done by
lustrates’ relationship in the AHA! authoring tool
’ [12]. This tool provides the authors with several
nships that occur in educational settings, like
r knowledge propagation. Moreover, by using the
’, authors can define new concept relationships
t to apply in their applications. These relationships
tically translated to the low-level adaptation rules
A! engine.
 force the designer to create adaptive applications
de adaptation to a learning style selected by the
 system. With AHA! the authors have more
oosing a learning style and associating their own
ategies with it.

For their adaptive applications the authors may want to take into
account various learning styles together; for example, the learning
styles of the Honey and Mumford model, and the holist vs.
serialist style. In that case different relationships cans be defined
between the same concepts. The ‘Graph Author’ can combine
these relationships into correct AHA! adaptation rules that express
the meaning of all the given rules.

3.2 Associating an Instructional Strategy with
the Selected Learning Style
Assume the author wants to create an adaptive application
‘Learning the Java Programming Language’. He may want to
make a distinction between example-oriented (Reflectors) and
activity-oriented learners (Activists). According to Honey and
Mumford’s learning model [16], Reflectors are people who tend
to collect and analyze data before taking an action. Activists are
more motivated by experimentation and attracted by challenge.
The example-oriented learner may prefer to try a ready-made
example first, then read the explanations. Only afterwards the
learner can proceed to try building his/her own applet, similar to
the one given in the example. Alternatively, the learner may be
allowed to edit a given example and see how it works with the
changes made.
The activity-oriented learner should be suggested first to try to
create his own applet, compile and run it. Then he may have a
look at a working example and compare it with the applet he/she
created.
This kind of instructional strategy can be implemented in AHA!,
by adding some special relationships, as follows. Some concepts
of the application can be presented from different perspectives.
For example, the concept ‘WritingApplets’ can be represented by
an example applet, explanation of how the applet should be
created or by the task of writing an applet. Figure 2 presents the
‘Graph Author’ interface that allows creating these alternatives;
the domain concepts hierarchy is in the left frame, and specifying
the behavior of the ‘WritingApplets’ concept is depicted in the
right. The concept ‘WritingApplets’ can be represented by 3
concepts: ‘AppletActivity’, ‘AppletExample’ and
‘AppletExplanation’.
The author may add, e.g., a new concept relationship type,
‘illustrates’. This type is a variant of the prerequisite and
propagation relationships1.
It is important to note that this newly created relationship type can
be reused by other authors for their own adaptive applications.
The existing concept relationships use the values of the attributes
of the domain concepts. The new concept relationship ‘illustrates’
needs specific information about the learners, namely, information
about the learning style.
This information about the learner is stored in the so-called
concept ‘personal’, which is created when the learner first logs
into the system. The values of the attributes of this concept, like
name, login, password are initialized through the registration
form. The author may add arbitrary attributes to the concepts of

1 indicating that knowledge about one concept is a prerequisite for

another concept, respectively knowledge increase for some
concept contributes to the knowledge of another concept.

the domain model as well as to concept ‘personal’. In this way,
the author can specify attributes which reflect the learner’s style.
In our example the author may use an attribute
‘ActivistReflector’, which can have values ‘Activist’, ‘Reflector’
or ‘none’ (if the learner can not be categorized as ‘Activist’ or
‘Reflector’).

T
(c
as
In
‘A
d
v
re
‘b
im
h
re
T
co
W
co
d
W
ci
co
co
F
an
‘W
‘A
L
d
‘A
‘A
te
th
is
‘A
p
W
A

116

Figure 2. Specifying the behavior of the ‘WritingApplets’
concept.
he templates for concept relationships can use two variables
alled ‘source’ and ‘destination’ or ‘parent’ and ‘child’), as well
 attributes of fixed, named concepts.
 our example, ‘AppletActivity’, ‘AppletExample’ and
ppletExplanation’ are source concepts. ‘WritingApplets’ is a

estination concept. The ‘illustrates’ relationships can have a
alue associated with it. It reflects how the source concept
presents the destination concept – ‘by activity’, ‘by example’,
y explanation’ and so on (for some other examples, by
age/text or by audio/video). Destination concepts which can

ave different representations should have an attribute which
flects which of the ‘representations’ have been accessed.
herefore the author may specify that the ‘WritingApplets’
ncept has ‘activity’ and ‘example’ attributes of Boolean type.
hen the learner accesses one of the source concepts and the
ncept is desirable, then the corresponding attribute of the

estination concept is set to ‘true’.
e can specify a general condition which describes under which
rcumstances each of the concepts becomes desirable. This
ndition is divided into six parts presented below, which are
nnected by ‘OR’ relationships (Table 2).

or the presentation this means that if the learner is ‘Reflector’
d he starts reading a page associated with a concept
ritingApplets’ he sees links to ‘AppletActivity’,
ppletExample’ and ‘AppletExplanation’ pages.

inks in AHA! can have 3 different colors indicating the
esirability of the link. Links to ‘AppletExample’ and

ppletExplanation’ will be shown in blue (desirable) and to
ppletActivity’ in black color or in the color of the rest of the

xt (as it is not desirable). After the learner looks at the example,
e link to ‘AppletExample’ becomes purple, meaning the concept
 desirable but already read. Meanwhile, a link to
ppletActivity’ becomes blue as a prerequisite condition:

ersonal.ActivistReflector==“Reflector” &&
ritingApplets.example &&
ppletActivity.representation==“activity”

becomes satisfied (the learner is ‘Reflector’, he read an example
concept and the AppletActivity.representation==“activity”).

Table 2. Honey and Mumford learning styles for AHA!
Condition Explanation

personal.ActivistReflector ==“none” for the learner who is not
categorized as ‘Reflector’ or
‘Activist’ all the concepts are
presented as desirable

source.representation ==
“explanation”

the explanation concepts are
desirable for different learners

personal.ActivistReflector==
“Reflector”&&
source.representation==“example”

if the learner is ‘Reflector’ then
the ‘example’ concepts are
desirable

personal.ActivistReflector==
“Reflector” && destination.example
&&
source.representation==“activity”

if the learner is ‘Reflector’ the
‘activity’ concept becomes
desirable after he read the
‘example’ concept

personal.ActivistReflector==
“Activist”&&
source.representation==“activity”

if the learner is ‘Activist’ then
the ‘activity’ concepts are
desirable

personal.ActivistReflector==
“Activist” && destination.activity
&&
source.representation==“example”

if the learner is ‘Activist’ the
‘example’ concept becomes
desirable after he read the
‘activity’ concept

AHA! allows to produce different versions of the pages by
including different embedded objects. By ‘object’ we mean a
piece of information which exists in pages or other objects. The
XHTML pages use the ‘object’ tag to indicate where conditionally
included objects should be placed. The author defines the
behavior of an object in a concept, which he links to that object.
This concept describes under which conditions, which base-object
is included into the page. A base object is a well-formed
document that can include other objects.
Assume that a page describing the activity has a link to an
example. The author may want to insert a text block before the
link. Under various conditions, different texts can be put before
the link. In case the learner is an ‘Activist’ and he starts an
experiment, the text block should be: ‘You may follow this link to
see an example’. Or if the learner is a ‘Reflector’, and he already
saw an example and starts with an activity, the text block should
say: ‘You may return back to the previously visited example’. The
author may define an object ‘TextBlock’ which he includes into
the XHTML page, associated with the ‘AppletActivity’ concept:
<object name="JavaTutorial.TextBlock" type="aha/text"/ >
The ‘aha/text’ type tells the AHA! engine that
‘JavaTutorial.TextBlock’ is a conditionally included object
(concept).

Various presentations of the concept can be defined in the same
way as in the above example of including a text block.
Instead of defining these representations as concepts, an
alternative solution is for the author to define an object concept
‘WritingAppletRepresentation’, and include this object into a
page associated with the ‘WritingApplets’ concept. Then, for the
‘Activist’ the page will be presented starting with a description of
an activity, followed by the links to an explanation and example,
and vice versa for the ‘Reflector’. However, the links that will
appear in this alternative presentation (pointing to an example and
explanation) will not be shown as desirable or not (so no color
scheme will be applied), as there are no concepts associated with
them.

3.3 Assessing Learning Styles in AHA!
The majority of the existing systems assesses learners’ learning
styles through psychometric questionnaires, which classify them
into stereotypical groups. Afterwards, during the actual learning,
the assumptions about the learner’s style are not updated.

AHA! currently does not provide any questionnaires for assessing
learning styles. If the learner knows what his/her learning style is
he/she can manually state it through the registration form (Figure
3). Learning preferences can be also specified based on the
general description of instructional strategies designed for various
learning styles. This description should be provided by the author
of an application.

AH
pr
Ba
as
dif
AH
tha

In
ma
ac
the
the
reg
sy
co
de
low
the
ins

If
reg
co
de
pr

117
Figure 3. Form to change the user model attribute values.
A! can provide a mechanism for inferring the learner’s
eferences (patterns) corresponding to particular learning styles.
sed on the learner’s browsing behavior the system can make

sumptions about preferences, for example, for reading order or
ferent types of media. However we do not claim that by using
A! we can assess the learning styles which are more general
n just preferences.

 the transition template for a concept relationship, the author
y specify the actions which are performed when the learner

cesses a page associated with a concept (like the probability that
 learner has a particular preference increases or decreases). If
 learner specified his/her learning style/preference through the
istration form and accesses the recommended concept, then the

stem’s confidence that learner defined his/her learning style
rrectly increases. Otherwise, if the learner accesses non-
sirable concepts, this confidence decreases. In case it becomes

er than some threshold value (may be defined by the author)
 system may ask the learner if he/she wants to change to an
tructional strategy which corresponds to another learning style.

the learner didn’t specify any preferences through the
istration form, then the system may trace the order in which

ncepts’ representations are accessed, thereby increasing or
creasing the confidence that the learner has a particular
eference. In this case, when the system reaches some threshold

value (also defined by the author) the system may inform the
learner that his/her browsing behavior indicates a preference
which corresponds to a particular learning style and he/she may
switch to an instructional strategy which corresponds to that style.

If the learner is not satisfied with an instructional strategy he/she
can always inspect the user model and make necessary
corrections. AHA! provides a special tool that allows authors to
create forms to let the learners change values of attributes of
concepts in their user model. It is thus possible to create a form
that lets learner to change their ‘ActivistReflector’ values (Figure
3).

4. DESIGNING LEARNING STYLES IN
MOT
4.1 Selection of Learning Style Elements
In the previous sections we have seen how the actual
instantiations of learning styles – translated into their respective
teaching strategies – can be represented. AHA! allows a lot of
freedom of expression, so basically anything is possible to
represent. Moreover, the old, purely XML tagging authoring
language has been replaced with frame tools, which are now-a-
days advocated as being the most progressing form of adaptive
hypermedia authoring [5].

However, the main problem with the strategies defined in AHA! is
that they are instances, so they are bound to their conceptual
representation. If the same strategy has to be applied again on a
different domain or concept map, it has to be generated again
from scratch, and no reuse is possible (with the exception of the
new link types).

In [10] we have introduced the basis of an adaptation language,
which tries to identify and represent the repetitive patterns that
appear in adaptive hypermedia, not in terms of concept
representation, but in terms of (adaptive) concept use. This
language allows the usage of general concepts as well as concept
instances. More importantly, for the purpose of the current paper,
it allows to create adaptive strategies written in this adaptation
language. This language is implemented as one of the newer
components of MOT [19], an online environment designed for
adaptive hypermedia authoring. In the following, we will analyze
how the learning styles previously described and interpreted for
AHA! can be expressed in MOT.

First let’s look at the two major ingredients of the learning styles:
providing different learners with different presentations of the
learning material (such as explanations, theory, exercises, etc.),
and providing different learners with different ordering of the
material. Figure 4 shows how these different presentations are
authored in MOT. The left frame represents the hierarchy of
concepts created within the concept map entitled ‘Concept map
for adaptive systems’; the right frame shows the different possible
presentations of a specific concept, called ‘Brainstorming phase’.
If we would be the creator (and not ‘olivier’) we would also see in
the left frame a button called ‘add attribute’ which would allow us
to add an unlimited number of other different attributes.

Figure 5. Ordering of the learning material in MOT.

Figure 4. Alternative presentations of learning material.

118

These attributes can be in concordance with a given learning
standard (such as SCORM [23], LOM [21], etc.).

These attributes are the meta-data that can be used in various
interpretations of the learning contents, as specified by different
learning strategies, as we shall see.

Ordering does not happen in MOT at the level of the concept
maps as in Figure 4. This is due to the fact that ordering has
something to do with the goal of the presentation, with the
audience we are aiming at. MOT therefore allows a different layer
for the type of relations between concepts that are inherent to the
presentation. This layer is called in MOT the ‘lesson’ layer.
Figure 5 shows an instance of the lesson layer in MOT. The
validity of the introduction of this extra layer has already been
proven by testing with students [7].

As can be seen in Figure 5, the ingredients of the lesson layer are
the same as the ones in the concept layer. Actually, the lesson
layer is a restricted, constrained version of the concept layer. The
type of restriction applied has something to do with the type of
presentation desired – so can come as an answer to the
requirement of a specific learning style. It is easy to see that
restrictions can imply selecting only attributes of a specific type,
such as only explanations or only exercises.

4.2 Associating Instructional Strategies with
Selected Learning Styles in MOT
Here we will look at the combined effects of the learning
characteristics analyzed for AHA!. In other words, we look at the
combination of reflector and concrete tendencies, which together
generate, as the cognitive science literature [17] tells us, the
cognitive style diverger. Similarly, combining abstract and active
tendencies generates the opposite, i.e., converger.

Here the major difference to the AHA! approach becomes clear:
the definition of adaptive strategies corresponding to instructional
strategies is enabled in MOT for generic concepts, and the same
strategy can, in principle, be applied over different concept maps
or lessons as described in the previous subsection. The MOT
approach is inspired by the author-push, while the AHA!
approach is inspired by the adaptation engine pull. In other words,
MOT tries to realize what authors supposedly desire from an
authoring tool, while AHA! tries to implement what is possible
given the limitations of the adaptive hypermedia engine.
Obviously, these two approaches are not totally independent of
each other, and they both have to influence a final adaptive
hypermedia authoring product.

For MOT, the author can, in principle, just select an adaptive
strategy corresponding to an instructional strategy created by a
different author, and apply it to an arbitrary concept map or lesson
map. The author might not have created any of these two pieces,
but still can use them in his/her class. This represents high-level
adaptive hypermedia authoring. On a lower level, the author
might have created a lesson, based on different concept maps, or
even just one concept map – but still can select some strategy
from a given list of existing ones. Only when having the urge to
create his/her own adaptive strategies does an author in MOT
need to specify the defining elements of this strategy. The result of
the creation, however, can be reused by others.

In the following, we show how these instructional strategies can
be written in MOT. We selected for exemplification two of the
Kolb learning styles [16], diverger and converger. In MOT,
instructional strategies corresponding to learning styles can be
authored via a frame authoring tool [5]. First, the description of
the strategy can be specified, as in Figure 6. The figure shows the
description of the strategy for diverger.

Figure 7 shows the creation interface for adaptive strategies
corresponding to different learning styles. The interface allows a
template (building block) type of programming, making in this
way both the task of the author, and the task of the compiler
easier. New blocks of adaptive language constructs can only be
inserted in the places marked by ‘add statement’.

This particular version of the expression of the adaptive behavior
for the learning style diverger in Figure 7 has been first proposed
in [10]. The written adaptive strategy just uses ‘generalize’ to
send the learner to more general (and easier) concepts, if the
results (on some test, for instance) were poor, and, on the
contrary, uses ‘specialize’, if the results were good (see also
Figure 14). Moreover, the adaptive strategy takes into
consideration the tendency of the learner to diverge, so keeps
him/her on track by keeping at all times a high level of adaptivity
(i.e., the learner’s choices are reduced, the system takes most of
the decisions and there are none - or very few - user-tunable

Figure 7. Writing the diverger generic strategy in MOT.

Figure 6. Defining the description of the generic strategy
for diverger in MOT.

119

parameters in the user model). Adaptivity level
(UM.Concept.AdaptLevel, Figure 7) can be slightly tuned, so that
learners with good progress get more flexibility, and vice-versa.
Please note that all the attribute values used in the example in
Figure 7 are generic, i.e., they are not yet overlaid over an existing
concept map (as in Figure 4). This means that they can be applied
on any concept (or lesson) map that has the elements which are
required by that specific instructional strategy.

In this way, in MOT, more complex behavior can be specified for
the desired adaptive strategy, than just via a one or two attributes
check such as in AHA!. It is not that it is impossible to represent
more complex behavior in AHA! – it is however unrealistic to
think that an author would be able to keep track of all the complex
interactions of the created behavior. Unless things are kept simple,
errors are hard to avoid.

An example from the other corner of the Kolb diagram (Figure 1)
is the converger behavior. Figure 8 shows the description creation
for this strategy and Figure 9 its implementation in MOT.

 The implementation for converger is similar to the diverger one
from the point of view of specialization and generalization

conditions. The difference is that the learner should be able to
tune more parameters, and choose how long the strategy is
applied. The adaptation level is kept low at all times, although it
varies slightly with the student achievement [10]. In such a way,
different adaptive strategies, corresponding to instructional
strategies aimed at different learning styles, can be authored in
MOT. The adaptive language used is being developed and refined
within an EU project, ADAPT.

4.3 Assessing Learning Styles with MOT
Here, just a few words need to be mentioned to make the MOT-
AHA! parallel about the possibility of assessing of learning styles.
The adaptation language in MOT was written to serve for the
description of various adaptive behaviors. We expected, as
mentioned in the previous sub-section, that some authors would
want to create these adaptive strategies, while others would be
content with just using them. It is therefore possible to determine
the entry point for the application of one strategy or another via
traditional questionnaires. However, the scope of the adaptive
strategies written with MOT is not, as said, limited to
implementation of instructional strategies corresponding to
specific learning styles. We could envision a possible adaptive
strategy that just monitors the browsing behavior of a learner,
changing as a result some user model variables that define the
user’s preferred learning style, for instance.

Moreover, the MOT environment also has another interesting
feature that can be exploited for the same purpose: MOT allows
the extension of the adaptation language with new adaptive
procedures. The definition of these procedures is very much the
same as that of adaptive strategies, with the exception of the fact
that procedures can be embedded into adaptive strategies. In other
words, adaptive procedures should work the same way as other
adaptation language constructs (Figure 10, 11).

 Figure 1
F

Figure 9. Writing the converger generic strategy in MOT.

.

Figure 8. Description of the generic strategy for converger.

120

Figure 10. Procedure specializeIfEnough

0 shows a procedure defined as an extension to the
igure 11. Using Procedure specializeIfEnough.

‘simple’ specialize adaptation language construct (specialize if
enough conditions are fulfilled). Figure 11 exemplifies using (i.e.,
calling) the newly created adaptive procedure.

Here we only show this to illustrate that the same mechanism
between adaptive strategies and adaptive procedures can be used
to combine monitoring strategies with instructional strategies: an
adaptive monitoring strategy can call one or more instructional
strategies, transformed into instructional procedures. The
monitoring strategy can make the selection between the
instructional strategies with respect to some change in user model
variables suggesting an increased inclination towards one or
another learning style.

5. MOT TO AHA! TRANSFORMATION
Some first attempts to analyze the translation of MOT into AHA!
have been done in [8]. The main problem is that MOT can define
behavior both at instance and at a more general level. The instance
level can be, in principle, easily translated into AHA!. The general
level has to be interpreted before it can become AHA! adaptation
engine material.

As already briefly discussed in [8], there are many different layers
to take into consideration when doing this translation. Here we
only discuss the translation of the mentioned layers, concentrating
on the adaptation strategy translation.

The concept maps, such as in Figure 4, represent instances, so are
easier to translate. Such a translation implies creating an XHTML
(basic) resource file for every attribute in MOT2.

Unlike in [8], where we were discussing the translation into AHA!
2.0, the translation of full concepts into AHA! 3.0 implies less
duplications and copying of basic resources, as it allows
composing of different sequences from basic resources via a new
construct called ‘objects’, as also used in section 3. This new
structure is closer to the MOT representation. The main idea is
that the MOT grouping of attributes (as different aspects of a
concept that should appear when certain instructional strategies
are triggered) can be translated into another set of XHTML files,
that contain lists of ‘objects’, pointing to the first set of created
XHTML files (as shown in Figure 12). The actual conditions that
determine which (or how many) of the alternatives are really
shown to the student are written in AHA! rules during translation
from the adaptive strategies, as shall be seen later.

AHA!
page concept

(corresponding to
MOT concept)

<object name="attr-concept1" type="aha/text" />
<object name="attr-concept2" type="aha/text" / >
<object name="attr-concept3" type="aha/text" />
<object name="attr-concept4" type="aha/text" />
.
.

XHTML file

Lesson translation into AHA! structure follows a similar fashion
to the translation of the contents to be conditionally included
(presented) for concepts. (Figure 13) To enforce the hierarchy and
order relationship, the XHTML files translating lessons contain,

2 This only means adding a header and a footer to the attribute and

saving it into a file with unique name, <file-name>.xhtml.

beside the list of object alternatives, also a separate, ordered list of
child sub-concept pointers. The children list can also be only
partially desirable, depending on the instructional strategy, so the
implementation is again via the new ‘object’ paradigm in AHA!.
Moreover, a small trick is here necessary, as for children we really
only want the link displayed and not the content of the child node
– fact which causes in AHA! the need of creating extra concepts
containing just a link each to a respective child concept.

AHA!
page concept

(corresponding to
MOT concept)

<object name="attr-concept1" type="aha/text" />
<object name="attr-concept2" type="aha/text" />
<object name="attr-concept3" type="aha/text" />
.
.

<object name="linkto_group_concept1" type="aha/text" />
<object name="linkto_group_concept2" type="aha/text" />
<object name="linkto_group_concept3" type="aha/text" />
.
.

 XHTML file

AHA!-Concept
(corresponding to

XHTML Link)

AHA!-Concept
(corresponding to

XHTML Link)

AHA!-Concept
(corresponding to

XHTML Link)

<a href="group.xhtml"
class="conditional"

target="main">subles1
 XHTML

<a href="group.xhtml"
class="conditional"

target="main">subles2
 XHTML

<a href="group.xhtml"
class="conditional"

target="main">subles3
 XHTML

B
tr
ha
so
ea

T
st
Fo
ad
m
co
gr
tr
an
m

E
st
A
da
ca
fr
14
st
an

T

is

Figure 12. Translating MOT concepts into AHA! concepts.

121
Figure 13. Translating MOT lessons into AHA! concepts.
eside these obvious, content-related translations, also some
anslations based on the internal structure in MOT and AHA!
ve to be performed, such as Name and Id translations. This may
und all a little bit technical and complicated, but it is only the
sier part of the translation.

ranslating adaptive strategies, especially generic instructional
rategies, of the type that can be reused, is the most difficult task.
r instance, a test on a value of a generic attribute will have to be
ded to each and every concept in the translated AHA! concept
ap. There is also a positive side of this – it is a proof of the
mpression power of a generic adaptive rule, which can imply
eat numbers of instance adaptive rules. In particular, the
anslation of an adaptive strategy affects the action, assignment
d attribute tables of the AHA! database the selected concept
ap is placed in.

ach generic adaptation language construct in the adaptation
rategy has to be translated into a number of IF-THEN rules for
HA!, and then applied to all concepts in a given AHA! concept
tabase. To illustrate this process, as well as the problems that
n occur during it, we select a very education-oriented construct
om MOT, specialize (and its counter-part, generalize; see Figure
) and discuss the translation. These constructs use the tree

ructure (of both conceptual and lesson layers) in order to go up
d down the tree, respectively [10].

he way we would want the translation of:

SPECIALIZE(condition)

:

 If condition Then show child(current_concept)

This could only be implemented as such in AHA! if the children
of each concept would appear as objects included into a page
associated with that concept. This doesn’t make sense if we want
to represent more than one hierarchical level, or if these concepts
have been already translated into independent AHA! concepts, as
described above.

So, an alternative, quite curious3 solution has to be found. Each
(child) concept in the new AHA! concept map has to be attached a
rule specifying that it is ready to be used if the condition is
satisfied and the father concept has been accessed. That means,
for the child concept C1.1 in Figure 14, the behavior in Figure 15
has to be attached. The opposite has to happen in order to
generate the generalize relation.

This is only an example of one adaptation language construct. As
can be seen in Figures 7, 8, adaptive strategies, or adaptive
procedures (Figure 10) can contain many more such constructs.
The translation is done from the authoring interface via a frame
window, as shown in Figure 6. The information contained in one
adaptive strategy has to be distributed over several concept
behavior descriptions in AHA!. The actual translation is done into
MySQL database tables, but we have shown the XML translation
in Figure 15 because of ease of reading. Moreover, AHA!
provides a very handy functionality of translating in both
directions between the MySQL version of the concept behavior
and the XML version.

6. DISCUSSION AND CONCLUSIONS
In this paper we have presented two different views upon
introducing learning styles in adaptive hypermedia systems: the
adaptive hypermedia engine pull and the adaptive hypermedia
author push. To illustrate these two views, we exemplified them
with two systems: AHA!, a well-known adaptive hypermedia
system [1], with its Graph Author tool, and MOT, a high-level
adaptive hypermedia authoring system [19].

We believe that it is important to study these two perspectives, as
the one tells us what authors might want to see their educational
adaptive hypermedia do, whereas the other one tells us what such
systems can do at present.

Another complementarity these two systems show is given by the
type of authoring they allow: the schema level authoring, as in
MOT, and the instance level authoring, as in AHA! (possible also
in MOT but not shown in this paper).

It is interesting to address authoring at the different levels, the
schema as well as the instance level, as authors themselves have
different goals and understanding levels [10]. Some authors may
prefer to make all the necessary specifications by hand, which
gives them full control over the adaptation, whereas others may
want to give higher level specifications, leaving the system to
perform the rest for them automatically.

The paper also showed that the distinction only exists in the
authoring tools. Structures authored with AHA!’s Graph Author
or with MOT can both be translated to concept structures and
adaptation rules used by the AHA! engine, or to other adaptive
engines. (In the ADAPT project a compiler from MOT to
WHURLE [3] is being developed for instance.)

As we are no psychologists, we do not recommend any particular
instructional strategy for a particular learning style. We only can

Father concept C1

Child concept C1.1

Child concept C1.2

n

ee
<?xml version="1.0"?>
<!DOCTYPE concept SYSTEM 'concept.dtd'>
<concept>
 <name>C1.1</name>
 <description></description>
 <expr></expr>
 <attributes>
 <attribute>
 <name>access</name>
 <description>triggered by page access</description>
 <default>false</default>
 <type>3</type>
 <actions>
 <action>
 <expr>C1.1.suitability</expr>
 <trigger>true</trigger>
 <truestat>
 <assignment>
 <variable>C1.1.visited</variable>
 <expr>100</expr>
 </assignment>
 </truestat>
 <falsestat />
 </action>
 ...
 </actions>
 <readonly>true</readonly>
 <system>true</system>
 <persistent>false</persistent>
 </attribute>
 <attribute>
 <name>suitability</name>
 <description>the suitability of this page</description>
 <default> C1.condition && C1.visited==100</default>
 <type>3</type>
 <actions />
 <readonly>true</readonly>
 <system>false</system>
 <persistent>false</persistent>
 </attribute>
 ...
 </attributes>
 <resource>file:/<path>/C1_1.xhtml</resource>
</concept>

implement various instructional strategies as specified by the
cognitive science literature and provide authors with tools that
Figure 15. Specialization rule for child concept C1.1.
Figure 14. Generalization versus Specializatio
specializespecializespecializespecialize
generalizgeneralizegeneralizgeneralize

3 Curious because it works in a different direction than the

original specialize relation.

122

allow them to define adaptive strategies and specify which
instructional strategies should correspond to which learning style.
From the end-user side perspective, we assume that it is always
important to provide them with different teaching strategies while
using an application. So an option for them is to try different ones
and select the one which corresponds better for them. However,
an unresolved issue is how to ensure that the transition between
learning styles or teaching strategies is smooth, i.e. that the learner
continually feels at ease with the way that both previously visited
and new material is presented (using the new style).

7. ACKNOWLEDGMENTS
This work is supported by the NLnet Foundation and by the
ADAPT project (101144-CP-1-2002-NL-MINERVA-MPP). Our
research uses the results of a great number of studies and findings,
presented in the reference list. Information about AHA! (and the
software) can be found at [1]. Information about MOT (and the
software) can be found at: [19].

8. REFERENCES
[1] AHA!. http://aha.win.tue.nl.
[2] LSAS.

http://www.archives.ecs.soton.ac.uk/users/nb99r/intro_short/
frame.htm.

[3] Brailsford, T.J.; Stewart, C.D.; Zakaria, M.R. Moore, A.
(2002). Autonavigation, Links and Narrative in an Adaptive -
Based Integrated Learning Environment. 11th Intl. World
Wide WebConference (2002), Hawaii, May 2002.

[4] Brusilovsky, P. Adaptive hypermedia. User Modeling and
User Adapted Interaction,11(1/2), (2001), 87-110.

[5] Brusilovsky, P. Developing adaptive educational hypermedia
systems: From design models to authoring tools. In: T.
Murray, S. Blessing and S. Ainsworth (eds.): Authoring
Tools for Advanced Technology Learning Environment.
Dordrecht: Kluwer Academic Publishers, 2003.

[6] Carver, C.A., Howard, R.A., and Lavelle, E. Enhancing
student learning by incorporating learning styles into
adaptive hypermedia. In Proceedings of ED-MEDIA ’96
World Conf. on Educational Multimedia and Hypermedia
(Boston, USA, 1996), 118-123.

[7] Cristea, A.I. Evaluating Adaptive Hypermedia Authoring
while Teaching Adaptive Systems. SAC, Track ELS’04,
ACM.

[8] Cristea, A.I., Floes, D., Stash, N., and De Bra, P. MOT meets
AHA!. In Proceedings of PEG’03 Conference (St.
Petersburg, Russia, July 2003).

[9] Cristea, A.I., and De Bra, P. Towards Adaptable and
Adaptive ODL Environments. In Proceedings of AACE E-
Learn’02 Conference (Montreal, Canada, October 2002),
232-239.

[10] Cristea, A.I., and Calvi, L. The three Layers of Adaptation
Granularity. UM’03. Springer.

[11] Dagger, D., Wade, V., Conlan, O.An Architecture for
Candidacy in Adaptive eLearning Systems to Facilitate the
Reuse of Learning Resources. In Proceedings of AACE
ELearn’03 Conference. (Phoenix, November 07-11, 2003).

[12] De Bra, P., Aerts, A. and Rousseau, B. Concept Relationship
Types for AHA! 2.0. In Proceedings of the AACE
ELearn'2002 Conference (Montréal, Canada, 2002), 1386-
1389.

[13] Dunn, R., and Dunn, K. Teaching students through their
individual learning styles: A practical approach. Reston, VA:
Reston Publishing, 1978.

[14] Felder, R.M. and Silverman, L.K. Learning and teaching
styles in engineering education. Journal of Engineering
Education, 78(7), (1988), 674-681.

[15] Gilbert, J.E. and Han, C.Y. Adapting instruction in search of
‘a significant difference’. Journal of Network and Computer
applications, 22, (1999).

[16] Honey, P. and Mumford A. The Manual of Learning Styles,
Peter Honey, Maidenhead, 1992.

[17] Kolb, D. A. Experiential learning experience as the source of
learning and development, New Jersey, Prentice Hall, 1984.

[18] Kwok, M. and Jones, C. Catering for different learning
styles, Association for learning Technology (ALT-J) 3, 1,
(1985), 5-11.

[19] MOT. http://wwwis.win.tue.nl/~acristea/mot.html.
[20] Paredes, P. and Rodrigues, P. Considering sensing-intuitive

dimension to exposition-exemplification in adaptive
sequencing. In Proceedings of the AH2002 Conference,
(Malaga, Spain, 2002), 556-559.

[21] LOM standard. http://ltsc.ieee.org/wg12/.
[22] Grigoriadou, M., Papanikolaou, K, Kornilakis, H. and

Magoulas, G. INSPIRE: an intelligent system for
personalized instruction in a remote environment. In
Proceedings of 3rd Workshop on Adaptive Hypertext and
Hypermedia (Sonthofen, Germany, 2001), 13-24.

[23] SCORM standard.
http://www.adlnet.org/index.cfm?fuseaction=scormabt.

[24] Stern, M. and Woolf, P. Adaptive content in an online
lecture system. In Proceedings of the International
Conference on Adaptive Hypermedia and Adaptive Web-
based systems (Trento, Italy, 2000), 291-300.

[25] Triantafillou, E., Pomportsis. A, and Georgiadou, E. AES-
CS: Adaptive Educational System base on cognitive styles.
In Proceedings of the AH2002 Workshop (Malaga, Spain,
2002), 10-20.

[26] iWeaver.
http://www3.cti.ac.at/icl/archive/presentation/wolf.pdf

[27] Wu, H. A. Reference Architecture for Adaptive Hypermedia
Applications, doctoral thesis, Eindhoven University of
Technology, The Netherlands, ISBN 90-386-0572-2.

123

